Section 17.6
<html><body>Section 17.6 <b>Laws of Physics and Life</b><br/><br/>
is one of the atoms in the amino acids that compose the protein molecules.<br/><br/>In nature, nitrogen is composed primarily of the isotope 14N. Only 0.36% of natural nitrogen is in the form of the nonradioactive isotope 15N. Ordinarily the amino acids reflect the natural composition of nitrogen.<br/><br/>
It is possible to synthesize amino acids in a laboratory. If the synthesis is
done with pure 15N, the amino acids are distinctly marked. The amino acid glycine produced in this way is introduced into the body of a subject where it is incorporated into the hemoglobin of the blood. Periodic sampling of the blood measures the number of blood cells containing the originally introduced glycine. Such experiments have shown that the average lifetime of a red blood cell is about four months.<br/><br/>
Radioactive isotopes can be traced more easily and in smaller quanti
ties than the isotopes that are not radioactive. Therefore, in reactions with elements that have radioactive isotopes, radioactive tracer techniques are preferred. Since the 1950s, when radioactive isotopes first became widely available, hundreds of important experiments have been conducted in this field.<br/><br/>
An example of this technique is the use of radioactive phosphorus in the
study of nucleic acids. The element phosphorus is an important component of the nucleic acids DNA and RNA. Naturally occurring phosphorus is all in the form 31P, and, of course, this is the isotope normally found in the nucleic acids. However, as discussed earlier, by bombarding sulphur 32 with neutrons, it is possible to produce the radioactive phosphorus 32P which has a half-life of 14.3 days. If the 32P isotope is introduced into the cell, the nucleic acids synthesized in the cell incorporate this isotope into their structure. The nucleic acids are then removed from the cell and their radioactivity is measured. From these measurements it is possible to calculate the rate at which nucleic acids are manufactured by the cell. These measurements, among others, provided evidence for the roles of DNA and RNA in cell functions.<br/><br/>
Radioactive tracers have been useful also in clinical measurements. In
one technique, the radioactive isotope of chromium is used to detect internal hemorrhage. This isotope is taken up by the blood cells, which then become radioactive. The radioactivity is, of course, kept well below the danger level.<br/><br/>If the circulation is normal, the radioactivity is distributed uniformly throughout the body. A pronounced increase in radioactivity in some region indicates a hemorrhage at that point.<br/><br/> <b>17.6</b><br/><br/> <b>Laws of Physics and Life</b><br/><br/>
We have discussed in this book many phenomena in the life sciences that are clearly explained by the theories of physics. Now we come to the most fundamental question: Can physics explain life itself? In other words, if we
Chapter 17 <b>Nuclear Physics</b>
put together the necessary combination of atoms, at each step following the known laws of physics, do we inevitably end up with a living organism, or must we invoke some new principles outside the realm of current physics in order to explain the occurrence of life? This is a very old question which still cannot be answered with certainty. But it can be clarified.<br/><br/>
Quantum mechanics, which is the fundamental theory of modern atomic
physics, has been very successful in describing the properties of atoms and the interaction of atoms with each other. Starting with a single proton and one electron, the theory shows that their interaction leads to the hydrogen atom with its unique configuration and properties. The quantum mechanical calculations for larger atoms are more complicated. In fact, so far a complete calculation has been performed only for the hydrogen atom. The properties of heavier atoms must be computed using various approximation techniques.<br/><br/>Yet there is little doubt that quantum mechanics describes all the properties of atoms from the lightest to the heaviest. The experimental evidence gathered over the past 100 years fully confirms this view.<br/><br/>
The interactions between atoms, which result in the formation of molecules,
are likewise in the domain of quantum mechanics. Here again exact solutions of the quantum mechanical equations have been obtained only for the simplest molecule, H2. Still it is evident that all the rules for both organic and inorganic chemistry follow from the principles of quantum mechanics. Even though our present numerical techniques cannot cope with the enormous calculations required to predict the exact configuration of a complex molecule, the concepts developed in physics and chemistry are applicable. The strengths of the interatomic bonds and the orientations of the atoms within the molecules are all in accord with the theory. This is true even for the largest organic molecules such as the proteins and DNA.<br/><br/>
Past this point, however, we encounter a new level of organization: the cell.<br/><br/>
The organic molecules, which are in themselves highly complex, combine to form cells, which in turn are combined to form larger living organisms, which possess all the amazing properties of life. These organisms take nourishment from the environment, grow, reproduce, and at some level begin to govern their own actions. Here it is no longer obvious that the theories governing the interaction of atoms lead directly to these functions that characterize life. We are now in the realm of speculations.<br/><br/>
The phenomena associated with life show such remarkable organization
and planning that we may be tempted to suggest that perhaps some new undiscovered law governs the behavior of organic molecules that come together to form life. Yet there is no evidence for any special laws operating within living systems. So far, on all levels of examination, the observed phenomena associated with life obey the well-known laws of physics. This does not mean that the existence of life follows from the basic principles of physics, but it may. In fact the large organic molecules inside cells are sufficiently complex to contain
within their structures the information necessary to guide in a predetermined way the activities associated with life. Some of these codes contained in the specific groupings of atoms within the molecules have now been unraveled.<br/><br/>Because of these specific structures, a given molecule always participates in a well-defined activity within the cell. It is very likely that all the complex functions of cells and of cell aggregates are simply the collective result of the enormously large number of predetermined but basically well-understood chemical reactions.<br/><br/>
This still leaves the most important question unanswered: What are the
forces and the principles that initially cause the atoms to assemble into coded molecules which then ultimately lead to life. The answer here is probably again within the scope of our existing theories of matter.<br/><br/>
In 1951, S. L. Miller simulated in his laboratory the type of conditions that
may have existed perhaps 3.5 billion years ago in the atmosphere of the primordial Earth. He circulated a mixture of water, methane, ammonia, and hydrogen through an electric discharge. The discharge simulated the energy sources that were then available from the sun, lightning, and radioactivity. After about one week Miller found that the chemical activities in the mixture produced organic molecules including some of the simple amino acids, which are the building blocks of proteins. Since then, hundreds of other organic molecules have been synthesized under similar conditions. Many of them resemble the components of the important large molecules found in cells. It is thus plausible that in the primordial oceans, rich in organic molecules produced by the prevailing chemical reactions, life began. A number of smaller organic molecules combined accidentally to form a large self-replicating molecule such as DNA. These, in turn, combined into organized aggregates and finally into living cells.<br/><br/>
Although the probability for the spontaneous occurrence of such events is
small, the time span of evolution is probably long enough to make this scenario plausible. If that is indeed the case, the current laws of physics can explain all of life. At the present state of knowledge about life processes, the completeness of the descriptions provided by physics cannot be proved. The principles of physics have certainly explained many phenomena, but mysteries remain. At present, however, there seems to be no need to invoke any new laws.<br/><br/>
<b>EXERCISES </b><br/><br/> <b>17-1. </b>Describe the basic principles of magnetic resonance imaging.<br/><br/><b>17-2. </b>What is your (considered) opinion of food preservation by radiation?<br/><br/><b>17-3. </b>Through a literature search describe the most recent use of fMRI.<br/><br/><b>17-4. </b>Discuss some of the most notable attributes of living systems that dis
tinguish them from inanimate ones.<br/><br/>
<b>Appendix A</b>
Basic Concepts in Mechanics<br/><br/>
In this section, we will define some of the fundamental concepts in mechanics.<br/><br/>We assume that the reader is familiar with these concepts and that here a simple summary will be sufficient. A detailed discussion can be found in basic physics texts, some of which are listed in the Bibliography.<br/><br/> <b>A.1</b><br/><br/> <b>Speed and Velocity</b><br/><br/>
Velocity is defined as the rate of change of position with respect to time. Both magnitude and direction are necessary to specify velocity. Velocity is, therefore, a vector quantity. The magnitude of the velocity is called <i>speed</i>. In the special case when the velocity of an object is constant, the distance <i>s </i>traversed in time <i>t </i>is given by <i>s </i> <i>vt</i><br/><br/>
(A.1)<br/><br/>
In this case, velocity can be expressed as <i>v </i> <i>s</i><br/><br/>
(A.2)<br/><br/> <i>t</i><br/><br/>
If the velocity changes along the path, the expression <i>s/t </i>yields the average velocity.<br/><br/> <b>272</b><br/><br/>
Section A.2 <b>Acceleration</b> <b>A.2</b><br/><br/> <b>Acceleration</b><br/><br/>
If the velocity of an object along its path changes from point to point, its motion is said to be <i>accelerated </i>(or decelerated). Acceleration is defined as the rate of change in velocity with respect to time. In the special case of uniform acceleration, the final velocity <i>v </i>of an object that has been accelerated for a time <i>t </i>is <i>v </i> <i>v</i>0 + <i>at</i><br/><br/>
(A.3)<br/><br/>
Here <i>v</i>0 is the initial velocity of the object, and <i>a </i>is the acceleration.1 Acceleration can, therefore, be expressed as <i>a </i> <i>v </i>− <i>v</i>0<br/><br/>
(A.4)<br/><br/> <i>t</i><br/><br/>
In the case of uniform acceleration, a number of useful relations can be
simply derived. The average velocity during the interval <i>t </i>is <i>v</i>av <i>v </i>+ <i>v</i>0<br/><br/>
(A.5)<br/><br/>
2<br/><br/>
The distance traversed during this time is <i>s </i> <i>v</i>av<i>t</i><br/><br/>
(A.6)<br/><br/>
Using Eqs. A.4 and A.5, we obtain <i>s </i> <i>v</i>0<i>t </i>+ <i>at </i>2<br/><br/>
(A.7)<br/><br/>
2<br/><br/>
By substituting <i>t </i> (<i>v </i>− <i>v</i>0)<i>/a </i>(from Eq. A.4) into Eq. A.7, we obtain <i>v</i>2 <i>v</i>2 + 2<i>as</i><br/><br/>
(A.8)<br/><br/>
0<br/><br/>
1Both velocity and acceleration may vary along the path. In general, velocity is defined as the
time derivative of the distance along the path of the object; that is,<br/><br/> <i>s</i><br/><br/> <i>v </i> lim<br/><br/>
<i>ds</i><br/><br/> <i></i><br/><br/> <i></i><br/><br/> <i>dt</i><br/><br/> <i>t </i>→ 0<br/><br/> <i>t</i><br/><br/>
Acceleration is defined as the time derivative of the velocity along the path; that is,
<br/><br/> <i>ds</i> <i>a </i> <i>dv </i> <i>d</i><br/><br/>
<i>d</i>2<i>s</i><br/><br/> <i>dt</i><br/><br/> <i>dt</i><br/><br/> <i>dt</i> <i>dt </i>2<br/><br/>
Appendix A <b>Basic Concepts in Mechanics</b><br/><br/> <b>A.3</b><br/><br/> <b>Force</b><br/><br/>
Force is a push or a pull exerted on a body which tends to change the state of motion of the body.<br/><br/> <b>A.4</b><br/><br/> <b>Pressure</b><br/><br/>
Pressure is the force applied to a unit area.<br/><br/> <b>A.5</b><br/><br/> <b>Mass</b><br/><br/>
We have stated that a force applied to a body tends to change its state of motion. All bodies have the property of resisting change in their motion. Mass<br/><br/>is a quantitative measure of inertia or the resistance to a change in motion.<br/><br/> <b>A.6</b><br/><br/> <b>Weight</b><br/><br/>
Every mass exerts an attractive force on every other mass; this attraction is called the <i>gravitational force</i>. The weight of a body is the force exerted on the body by the mass of the Earth. The weight of a body is directly proportional to its mass. Weight being a force is a vector, and it points vertically down in the direction of a suspended plumb line.<br/><br/>
Mass and weight are related but distinct properties of an object. If a body
were isolated from all other bodies, it would have no weight, but it would still have mass.<br/><br/> <b>A.7</b> <b>Linear Momentum</b><br/><br/>
Linear momentum of a body is the product of its mass and velocity; that is,<br/><br/>
Linear momentum <i>mv</i><br/><br/>
(A.9)<br/><br/> <b>A.8</b> <b>Newton’s Laws of Motion</b>
The foundations of mechanics are Newton’s three <i>laws of motion</i>. The laws are based on observation, and they cannot be derived from more basic principles. These laws can be stated as follows:<br/><br/> <b>First Law: </b><i>A body remains at rest or in a state of uniform motion in a straight</i> <i>line unless it is acted on by an applied force</i>.<br/><br/>
Section A.9 <b>Conservation of Linear Momentum</b><br/><br/> <b>Second Law: </b><i>The time rate of change of the linear momentum of a body is</i> <i>equal to the force F applied to it</i>.<br/><br/>
Except at very high velocities, where relativistic effects must be considered, the second law can be expressed mathematically in terms of the mass <i>m </i>and acceleration <i>a </i>of the object as2<br/><br/> <i>F </i> <i>ma</i><br/><br/>
(A.10)<br/><br/>
This is one of the most commonly used equations in mechanics. It shows that if the applied force and the mass of the object are known, the acceleration can be calculated. When the acceleration is known, the velocity of the object and the distance traveled can be computed from the previously given equations.<br/><br/>
The Earth’s gravitational force, like all other forces, causes an acceleration. By observing the motion of freely falling bodies, this acceleration has been measured. Near the surface of the Earth, it is approximately 9<i>.</i>8 m/sec2. Because gravitational acceleration is frequently used in computations, it has been given a special symbol <i>g</i>. Therefore, the gravitational force on an object with mass <i>m </i>is<br/><br/> <i>F</i>gravity <i>mg</i><br/><br/>
(A.11)<br/><br/>
This is, of course, also the weight of the object.<br/><br/> <b>Third Law: </b><i>For every action, there is an equal and opposite reaction</i>. This
law implies that when two bodies <i>A </i>and <i>B </i>interact so that <i>A </i>exerts a force on <i>B</i>, a force of the same magnitude but opposite in direction is exerted by <i>B </i>on <i>A</i>. A number of illustrations of the third law are given in the text.<br/><br/> <b>A.9</b> <b>Conservation of Linear Momentum</b>
It follows from Newton’s laws that the total linear momentum of a system of objects remains unchanged unless acted on by an outside force.<br/><br/>
2The second law can be expressed mathematically in terms of the time derivative of
momentum: that is,
<i>mv</i>(<i>t </i>+ <i>t</i>) − <i>mv</i>(<i>t</i>) <i>dv</i><br/><br/>
Force <br/><br/> <i></i><br/><br/>
<i>d </i>(<i>mv</i>) <i>m </i> <i>ma</i> <i>t </i>→ 0<br/><br/> <i>t</i><br/><br/> <i>dt</i><br/><br/> <i>dt</i><br/><br/> <br/><img src="./tmp/raw_656f49f53d8d3c5343596b2cc8b234fc-295_1.jpg"/><br/> <br/><img src="./tmp/raw_656f49f53d8d3c5343596b2cc8b234fc-295_2.png"/><br/>
Appendix A <b>Basic Concepts in Mechanics</b> <b>FIGURE A.1 </b> The radian.<br/><br/> <b>A.10</b><br/><br/> <b>Radian</b><br/><br/>
In the analysis of rotational motion, it is convenient to measure angles in a unit called a <i>radian</i>. With reference to Fig. A.1, the angle in radian units is defined as <i>θ </i> <i>s</i><br/><br/>
(A.12)<br/><br/> <i>r</i>
where <i>s </i>is the length of the circular arc and <i>r </i>is the radius of rotation. In a full circle, the arc length is the circumference 2<i>πr</i>. Therefore in radian units the angle in a full circle is <i>θ </i> 2<i>πr </i> 2<i>π </i>rad<br/><br/> <i>r</i><br/><br/>
Hence,
1 rad 360◦ 57<i>.</i>3◦<br/><br/>
2<i>π</i><br/><br/> <b>A.11</b> <b>Angular Velocity</b><br/><br/>
The angular velocity <i>ω </i>is the angular displacement per unit time; that is, if a body rotates through an angle <i>θ </i>(in radians) in a time <i>t</i>, the angular velocity is <i>ω </i> <i>θ </i>(rad/sec)<br/><br/>
(A.13)<br/><br/> <i>t</i><br/><br/>
Section A.14 <b>Equations for Angular Momentum</b><br/><br/> <b>A.12</b> <b>Angular Acceleration</b><br/><br/>
Angular acceleration <i>α </i>is the time rate of change of angular velocity. If the initial angular velocity is <i>ω</i>0 and the final angular velocity after a time <i>t </i>is <i>ωf</i>, the angular acceleration is3<br/><br/> <i>ωf </i>− <i>ω</i>0<br/><br/> <i>α </i><br/><br/>
(A.14)<br/><br/> <i>t</i><br/><br/> <b>A.13</b> <b>Relations between Angular and Linear Motion</b><br/><br/>
As an object rotates about an axis, each point in the object travels along the circumference of a circle; therefore, each point is also in linear motion. The linear distance <i>s </i>traversed in angular motion is <i>s </i> <i>rθ</i><br/><br/>
The linear velocity <i>v </i>of a point that is rotating at an angular velocity <i>ω </i>a distance <i>r </i>from the center of rotation is <i>v </i> <i>rω</i><br/><br/>
(A.15)<br/><br/>
The direction of the vector <i>v </i>is at all points tangential to the path <i>s</i>. The linear acceleration along the path <i>s </i>is <i>a </i> <i>rα</i><br/><br/>
(A.16)<br/><br/> <b>A.14</b> <b>Equations for Angular Momentum</b><br/><br/>
The equations for angular motion are analogous to the equations for translational motion. For a body moving with a constant angular acceleration <i>α </i>and initial angular velocity <i>ω</i>0, the relationships are shown in Table A.1.<br/><br/>
3Both angular velocity and angular acceleration may vary along the path. In general, the
instantaneous angular velocity and acceleration are defined as <i>ω </i> <i>dθ </i>; <i>α </i> <i>dω </i> <i>d </i>2<i>θ</i><br/><br/> <i>dt</i><br/><br/> <i>dt</i> <i>dt </i>2<br/><br/>
Appendix A <b>Basic Concepts in Mechanics</b> <b>TABLE A.1 </b> <b>Equations for</b> <b>Rotational Motion (angular<br/>acceleration, </b><i>α </i> <b>constant)</b><br/><br/> <i>ω</i>
<i>ω </i>+<br/><br/>
0<br/><br/> <i>αt</i><br/><br/> <i>θ</i><br/><br/>
<i>ω</i>0<i>t </i>+ 1<i>αt</i>2<br/><br/>
2<br/><br/> <i>ω</i>2 <i>ω</i>2 + 2<i>αθ</i><br/><br/>
0<br/><br/>
+ <i>ω</i>)<br/><br/> <i>ω</i><br/><br/>
(<i>ω</i>0<br/><br/>
av<br/><br/>
2<br/><br/> <b>A.15</b> <b>Centripetal Acceleration</b><br/><br/>
As an object rotates uniformly around an axis, the magnitude of the linear velocity remains constant, but the direction of the linear velocity is continuously changing. The change in velocity always points toward the center of rotation. Therefore, a rotating body is accelerated toward the center of rotation. This acceleration is called <i>centripetal </i>(center-seeking) <i>acceleration</i>.<br/><br/>The magnitude of the centripetal acceleration is given by <i>ac </i> <i>v</i>2 <i>ω</i>2<i>r</i><br/><br/>
(A.17)<br/><br/> <i>r</i>
where <i>r </i>is the radius of rotation and <i>v </i>is the speed tangential to the path of rotation. Because the body is accelerated toward its center of rotation, we conclude from Newton’s second law that a force pointing toward the center of rotation must act on the body. This force, called the <i>centripetal force Fc</i>, is given by <i>Fc </i> <i>mac </i> <i>mv</i>2 <i>mω</i>2<i>r</i><br/><br/>
(A.18)<br/><br/> <i>r</i>
where <i>m </i>is the mass of the rotating body.<br/><br/>
For a body to move along a curved path, a centripetal force must be applied
to it. In the absence of such a force, the body moves in a straight line, as required by Newton’s first law. Consider, for example, an object twirled at the end of a rope. The centripetal force is applied by the rope on the object.<br/><br/>From Newton’s third law, an equal but opposite reaction force is applied on the rope by the object. The reaction to the centripetal force is called the <i>centrifugal force</i>. This force is in the direction away from the center of rotation.<br/><br/>The centripetal force, which is required to keep the body in rotation, always acts perpendicular to the direction of motion and, therefore, does no work
Section A.17 <b>Torque</b> <b>TABLE A.2 </b> <b>Moments of Inertia of Some Simple Bodies</b><br/><br/> <b>Body</b><br/><br/> <b>Location of axis</b><br/><br/> <b>Moment of inertia</b><br/><br/>
A thin rod of length <i>l </i>Through the center<br/><br/> <i>ml</i>2<i>/</i>12<br/><br/>
A thin rod of length <i>l </i>Through one end<br/><br/> <i>ml</i>2<i>/</i>3<br/><br/>
Sphere of radius <i>r</i><br/><br/>
Along a diameter<br/><br/>
2<i>mr</i>2<i>/</i>5<br/><br/>
Cylinder of radius <i>r</i><br/><br/>
Along axis of symmetry <i>mr</i>2<i>/</i>2
(see Eq. A.28). In the absence of friction, energy is not required to keep a body rotating at a constant angular velocity.<br/><br/> <b>A.16</b><br/><br/> <b>Moment of Inertia</b><br/><br/>
The moment of inertia in angular motion is analogous to mass in translational motion. The moment of inertia <i>I </i>of an element of mass <i>m </i>located a distance <i>r<br/></i>from the center of rotation is<br/><br/> <i>I </i> <i>mr </i>2<br/><br/>
(A.19)<br/><br/>
In general, when an object is in angular motion, the mass elements in the
body are located at different distances from the center of rotation. The total moment of inertia is the sum of the moments of inertia of the mass elements in the body.<br/><br/>
Unlike mass, which is a constant for a given body, the moment of inertia
depends on the location of the center of rotation. In general, the moment of inertia is calculated by using integral calculus. The moments of inertia for a few objects useful for our calculations are shown in Table A.2.<br/><br/> <b>A.17</b><br/><br/> <b>Torque</b><br/><br/>
Torque is defined as the tendency of a force to produce rotation about an axis.<br/><br/>Torque, which is usually designated by the letter <i>L</i>, is given by the product of the perpendicular force and the distance <i>d </i>from the point of application to the axis of rotation; that is (see Fig. A.2), <i>L </i> <i>F </i>cos <i>θ </i>× <i>d</i><br/><br/>
(A.20)<br/><br/>
The distance <i>d </i>is called the <i>lever arm </i>or <i>moment arm</i>.<br/><br/> <br/><img src="./tmp/raw_656f49f53d8d3c5343596b2cc8b234fc-299_1.jpg"/><br/> <br/><img src="./tmp/raw_656f49f53d8d3c5343596b2cc8b234fc-299_2.png"/><br/>
Appendix A <b>Basic Concepts in Mechanics</b> <b>FIGURE A.2 </b> Torque produced by a force.<br/><br/> <b>A.18</b> <b>Newton’s Laws of Angular Motion</b><br/><br/>
The laws governing angular motion are analogous to the laws of translational motion. Torque is analogous to force, and the moment of inertia is analogous to mass.<br/><br/> <b>First Law: </b>A body in rotation will continue its rotation with a constant angu
lar velocity unless acted upon by an external torque.<br/><br/> <b>Second Law: </b>The mathematical expression of the second law in angular
motion is analogous to Eq. A.10. It states that the torque is equal to the product of the moment of inertia and the angular acceleration; that is, <i>L </i> <i>Iα</i>
(A.21)<br/><br/> <b>Third Law: </b>For every torque, there is an equal and opposite reaction torque.<br/><br/> <b>A.19</b> <b>Angular Momentum</b><br/><br/>
Angular momentum is defined as
Angular momentum <i>Iω</i><br/><br/>
(A.22)<br/><br/>
From Newton’s laws, it can be shown that angular momentum of a body is conserved if there is no unbalanced external torque acting on the body.<br/><br/> <br/><img src="./tmp/raw_656f49f53d8d3c5343596b2cc8b234fc-300_1.jpg"/><br/> <br/><img src="./tmp/raw_656f49f53d8d3c5343596b2cc8b234fc-300_2.png"/><br/>
Section A.20 <b>Addition of Forces and Torques</b> <b>FIGURE A.3 </b> The resolution of a force into its vertical and horizontal components.<br/><br/> <b>A.20</b> <b>Addition of Forces and Torques</b><br/><br/>
Any number of forces and torques can be applied simultaneously to a given object. Because forces and torques are vectors, characterized by both a magnitude and a direction, their net effect on a body is obtained by vectorial addition.<br/><br/>When it is required to obtain the total force acting on a body, it is often convenient to break up each force into mutually perpendicular components. This is illustrated for the two-dimensional case in Fig. A.3. Here we have chosen the horizontal <i>x</i>- and the vertical <i>y</i>-directions as the mutually perpendicular axes. In a more general three-dimensional case, a third axis is required for the analysis.<br/><br/>
The two perpendicular components of the force <i>F </i>are <i>Fx </i> <i>F </i>cos <i>θ</i><br/><br/>
(A.23)<br/><br/> <i>Fy </i> <i>F </i>sin <i>θ</i><br/><br/>
The magnitude of the force <i>F </i>is given by <br/><br/> <i>F </i><br/><br/> <i>F </i>2 <i>x </i>+ <i>F </i>2<br/><br/> <i>y</i><br/><br/>
(A.24)<br/><br/>
When adding a number of forces (<i>F</i>1<i>, F</i>2<i>, F</i>3<i>, . . .</i>) the mutually perpendic
ular components of the total force <i>FT </i>are obtained by adding the corresponding
Appendix A <b>Basic Concepts in Mechanics</b>
components of each force; that is,
(<i>FT</i>)<i>x </i> (<i>F</i>1)<i>x </i>+ (<i>F</i>2)<i>x </i>+ (<i>F</i>3)<i>x </i>+ · · ·<br/><br/>
(A.25)<br/><br/>
(<i>FT</i>)<i>y </i> (<i>F</i>1)<i>y </i>+ (<i>F</i>2)<i>y </i>+ (<i>F</i>3)<i>y </i>+ · · ·<br/><br/>
The magnitude of the total force is <br/><br/> <i>FT </i>
(<i>FT</i>)2<i>x </i>+ (<i>FT</i>)2<i>y</i><br/><br/>
(A.26)<br/><br/>
The torque produced by a force acts to produce a rotation in either a clockwise
or a counterclockwise direction. If we designate one direction of rotation as positive and the other as negative, the total torque acting on a body is obtained by the addition of the individual torques each with the appropriate sign.<br/><br/> <b>A.21</b> <b>Static Equilibrium</b><br/><br/>
A body is in static equilibrium if both its linear and angular acceleration are zero. To satisfy this condition, the sum of the forces <i>F </i>acting on the body, as well as the sum of the torques <i>L </i>produced by these forces must be zero; that is,<br/><br/> <b>P</b><br/><br/> <b>P</b><br/><br/> <i>F </i> 0 and<br/><br/> <i>L </i> 0<br/><br/>
(A.27)<br/><br/> <b>A.22</b><br/><br/> <b>Work</b><br/><br/>
In our everyday language, the word <i>work </i>denotes any types of effort whether physical or mental. In physics, a more rigorous definition is required. Here work is defined as the product of force and the distance through which the force acts.<br/><br/>Only the force parallel to the direction of motion does work on the object. This is illustrated in Fig. A.4. A force <i>F </i>applied at an angle <i>θ </i>pulls the object along the surface through a distance <i>D</i>. The work done by the force is
Work <i>F </i>cos <i>θ </i>× <i>D</i>
(A.28)<br/><br/> <b>A.23</b><br/><br/> <b>Energy</b>
Energy is an important concept. We find reference to energy in connection with widely different phenomena. We speak of atomic energy, heat energy, potential energy, solar energy, chemical energy, kinetic energy; we even speak
<br/><img src="./tmp/raw_656f49f53d8d3c5343596b2cc8b234fc-302_1.jpg"/><br/> <br/><img src="./tmp/raw_656f49f53d8d3c5343596b2cc8b234fc-302_2.png"/><br/>
Section A.24 <b>Forms of Energy</b> <b>FIGURE A.4 </b> Work done by a force.<br/><br/>
of people as being full of energy. The common factor that ties together these manifestations is the possibility of obtaining work from these sources. The connection between energy and work is simple: Energy is required to do work. Energy is measured in the same units as work; in fact, there is a oneto-one correspondence between them. It takes 2 J of energy to do 2 J of work.<br/><br/>In all physical processes, energy is conserved. Through work, one form of energy can be converted into another, but the total amount of energy remains unchanged.<br/><br/> <b>A.24</b><br/><br/> <b>Forms of Energy</b> <b>A.24.1 Kinetic Energy</b><br/><br/>
Objects in motion can do work by virtue of their motion. For example, when a moving object hits a stationary object, the stationary object is accelerated.<br/><br/>This implies that the moving object applied a force on the stationary object and performed work on it. The kinetic energy (<i>KE</i>) of a body with mass <i>m<br/></i>moving with a velocity <i>v </i>is <i>KE </i> 1 <i>mv</i>2<br/><br/>
(A.29)<br/><br/>
2<br/><br/>
In rotational motion, the kinetic energy is <i>KE </i> 1 <i>Iω</i>2<br/><br/>
(A.30)<br/><br/>
2<br/><br/> <b>A.24.2 Potential Energy</b><br/><br/>
Potential energy of a body is the ability of the body to do work because of its position or configuration. A body of weight <i>W </i>raised to a height <i>H </i>with respect
Appendix A <b>Basic Concepts in Mechanics</b>
to a surface has a potential energy (<i>PE</i>) <i>PE </i> <i>WH</i><br/><br/>
(A.31)<br/><br/>
This is the amount of work that had to be performed to raise the body to height <i>H</i>. The same amount of energy can be retrieved by lowering the body back to the surface.<br/><br/>
A stretched or compressed spring possesses potential energy. The force
required to stretch or compress a spring is directly proportional to the length of the stretch or compression (<i>s</i>); that is, <i>F </i> <i>ks</i><br/><br/>
(A.32)<br/><br/>
Here <i>k </i>is the spring constant. The potential energy stored in the stretched or compressed spring is <i>PE </i> 1 <i>ks</i>2<br/><br/>
(A.33)<br/><br/>
2<br/><br/> <b>A.24.3 Heat</b><br/><br/>
Heat is a form of energy, and as such it can be converted to work and other forms of energy. Heat, however, is not equal in rank with other forms of energy. While work and other forms of energy can be completely converted to heat, heat energy can only be converted partially to other forms of energy.<br/><br/>This property of heat has far-reaching consequences which are discussed in Chapter 10.<br/><br/>
Heat is measured in calorie units. One calorie (cal) is the amount of heat
required to raise the temperature of 1 g of water by 1 C◦. The heat energy required to raise the temperature of a unit mass of a substance by 1 degree is called the <i>specific heat</i>. One calorie is equal to 4.184 J.<br/><br/>
A heat unit frequently used in chemistry and in food technology is the <i>kilocalorie </i>or Cal which is equal to 1000 cal.<br/><br/> <b>A.25</b><br/><br/> <b>Power</b><br/><br/>
The amount of work done—or energy expended—per unit time is called <i>power</i>. The algebraic expression for power is <i>P </i> <i>E</i>
(A.34)<br/><br/> <i>t</i><br/><br/>
where <i>E </i>is the energy expended in a time interval <i>t</i>.<br/><br/>
Section A.26 <b>Units and Conversions</b> <b>A.26</b><br/><br/> <b>Units and Conversions</b><br/><br/>
In our calculations we will mostly use SI units in which the basic units for length, mass, and time are meter, kilogram, and second. However, other units are also encountered in the text. Units and conversion factors for the most commonly encountered quantities are listed here with their abbreviations.<br/><br/> <b>A.26.1 Length</b> <b>SI unit:</b>
meter (m) <b>Conversions: </b>1 m 100 cm (centimeter) 1000 mm (millimeter)
1000 m 1 km 1 m 3<i>.</i>28 feet 39<i>.</i>37 in 1 km 0<i>.</i>621 mile 1 in 2<i>.</i>54 cm<br/><br/>
In addition, the micron and the angstrom are used frequently in physics and
biology.<br/><br/>
1 micron (<i>μ</i>m) 10−6 m 10−4 cm 1 angstrom ( ˚
A)∗ 10−8 cm<br/><br/> <b>A.26.2 Mass</b> <b>SI unit:</b>
kilogram (kg) <b>Conversions: </b>1 kg 1000 g<br/><br/>
The weight of a 1-kg mass is 9.8 newton (N).<br/><br/> <b>A.26.3 Force</b> <b>SI Unit:</b>
kg m s−2, name of unit: newton (N) <b>Conversions: </b>1 N 105 dynes (dyn) 0<i>.</i>225 lbs<br/><br/> <b>A.26.4 Pressure</b> <b>SI unit:</b>
kg m−1 s−2, name of unit: pascal (Pa) <b>Conversions: </b>1 Pa 10−1 dynes/cm2 9<i>.</i>87 × 10−6 atmosphere (atm)
1<i>.</i>45 × 10−4 lb/in2
1 atm 1<i>.</i>01 × 105 Pa 760 mmHg (torr)
Appendix A <b>Basic Concepts in Mechanics</b> <b>A.26.5 Energy</b> <b>SI unit:</b>
kg m−2 s−2, name of unit: joule (J) <b>Conversion: </b>1 J 1 N-m 107 ergs 0<i>.</i>239 cal 0<i>.</i>738 ft-lb <b>A.26.6 Power</b> <b>SI unit:</b><br/><br/>
J s−1, name of unit: watt (W) <b>Conversion: </b>1 W 107 ergs/sec 1<i>.</i>34 × 10−3 horsepower (hp)
<b>Appendix B</b>
Review of Electricity<br/><br/> <b>B.1</b> <b>Electric Charge</b><br/><br/>
Matter is composed of atoms. An atom consists of a nucleus surrounded by electrons. The nucleus itself is composed of protons and neutrons. Electric charge is a property of protons and electrons. There are two types of electric charge: positive and negative. The proton is positively charged, and the electron is negatively charged. All electrical phenomena are due to these electric charges.<br/><br/>
Charges exert forces on each other. Unlike charges attract and like charges
repel each other. The electrons are held around the nucleus by the electrical attraction of the protons. Although the proton is about 2000 times heavier than the electron, the magnitude of the charge on the two is the same. There are as many positively charged protons in an atom as negatively charged electrons.<br/><br/>The atom as a whole is, therefore, electrically neutral. The identity of an atom is determined by the number of protons in the nucleus. Thus, for example, hydrogen has 1 proton; nitrogen has 7 protons; and gold has 79 protons.<br/><br/>
It is possible to remove electrons from an atom, making it positively charged.<br/><br/>
Such an atom with missing electrons is called a <i>positive ion</i>. It is also possible to add an electron to an atom which makes it a <i>negative ion</i>.<br/><br/>
Electric charge is measured in coulombs (C). The magnitude of the charge
on the proton and the electron is 1<i>.</i>60 × 10−19 C. The force <i>F </i>between two charged bodies is proportional to the product of their charges <i>Q</i>1 and <i>Q</i>2 and is inversely proportional to the square of the distance <i>R </i>between them; that is, <i>F </i> <i>KQ</i>1<i>Q</i>2
(B.1)<br/><br/> <i>R</i>2<br/><br/> <b>287</b><br/><br/> <br/><img src="./tmp/raw_656f49f53d8d3c5343596b2cc8b234fc-307_1.jpg"/><br/>
Appendix B <b>Review of Electricity</b><br/><br/>
This equation is known as <i>Coulomb’s law</i>. If <i>R </i>is measured in meters, the
constant <i>K </i>is 9 × 109, and <i>F </i>is obtained in newtons.<br/><br/> <b>B.2</b> <b>Electric Field</b><br/><br/>
An electric charge exerts a force on another electric charge; a mass exerts a force on another mass; and a magnet exerts a force on another magnet. All these forces have an important common characteristic: Exertion of the force does not require physical contact between the interacting bodies. The forces act at a distance. The concept of <i>lines of force </i>or <i>field lines </i>is useful in visualizing these forces which act at a distance.<br/><br/>
Any object that exerts a force on another object without contact can be
thought of as having lines of force emanating from it. The complete line configuration is called a <i>force field</i>. The lines point in the direction of the force, and their density at any point in space is proportional to the magnitude of the force at that point.<br/><br/>
The lines of force emanate from an electric charge uniformly in all direc
tions. By convention, the lines point in the direction of the force that the source charge exerts on a positive charge. Thus, the lines of force point away from a positive source charge and into a negative source charge (see Fig. B.1). The number of lines emanating from the charge is proportional to the magnitude of the electric charge. If the size of the source charge is doubled, the number of force lines is also doubled.<br/><br/>
Lines of force need not be straight lines; as we mentioned, they point in
the direction in which the force is exerted. As an example, we can consider the <b>FIGURE B.1 </b> Two-dimensional representation of the electric field produced by a
positive point charge (a) and a negative point charge (b).<br/><br/> <br/><img src="./tmp/raw_656f49f53d8d3c5343596b2cc8b234fc-308_1.jpg"/><br/>
Section B.4 <b>Electric Current</b> <b>FIGURE B.2 </b> Lines of force produced by a positive and a negative charge separated
by a distance <i>d</i>.<br/><br/>
net field due to two charges separated by a distance <i>d</i>. To determine this field we must compute the direction and size of the net force on a positive charge at all points in space. This is done by adding vectorially the force lines due to each charge. The force field due to a positive and negative charge of equal magnitude separated by a distance <i>d </i>from each other is shown in Fig. B.2.<br/><br/>Here the lines of force are curved. This is, of course, the direction of the net force on a positive charge in the region surrounding the two fixed charges.<br/><br/>The field shown in Fig. B.2 is called a <i>dipole field</i>, and it is similar to the field produced by a bar magnet.<br/><br/> <b>B.3</b> <b>Potential Difference or Voltage</b><br/><br/>
The electric field is measured in units of volt per meter (or volt per centimeter).<br/><br/>The product of the electric field and the distance over which the field extends is an important parameter which is called <i>potential difference </i>or <i>voltage</i>. The voltage (<i>V </i>) between two points is a measure of energy transfer as the charge moves between the two points. Potential difference is measured in volts. If there is a potential difference between two points, a force is exerted on a charge placed in the region between these points. If the charge is positive, the force tends to move it away from the positive point and toward the negative point.<br/><br/> <b>B.4</b> <b>Electric Current</b><br/><br/>
An electric current is produced by a motion of charges. The magnitude of the current depends on the amount of charge flowing past a given point in a given period of time. Current is measured in amperes (A). One ampere is 1 coulomb (C) of charge flowing past a point in 1 second (sec).<br/><br/> <br/><img src="./tmp/raw_656f49f53d8d3c5343596b2cc8b234fc-309_1.jpg"/><br/> <br/><img src="./tmp/raw_656f49f53d8d3c5343596b2cc8b234fc-309_2.png"/><br/> <br/><img src="./tmp/raw_656f49f53d8d3c5343596b2cc8b234fc-309_3.jpg"/><br/> <br/><img src="./tmp/raw_656f49f53d8d3c5343596b2cc8b234fc-309_4.jpg"/><br/>
Appendix B <b>Review of Electricity</b><br/><br/> <b>B.5</b> <b>Electric Circuits</b><br/><br/>
The amount of current flowing between two points in a material is proportional to the potential difference between the two points and to the electrical properties of the material. The electrical properties are usually represented by three parameters: resistance, capacitance, and inductance. Resistance measures the opposition to current flow. This parameter depends on the property of the material called <i>resistivity</i>, and it is analogous to friction in mechanical motion. Capacitance measures the ability of the material to store electric charges. Inductance measures the opposition in the material to changes in current flow. All materials exhibit to some extent all three of these properties; often, however, one of these properties is predominant. It is possible to manufacture components with specific values of resistance, capacitance, or inductance. These are called, respectively, <i>resistors, capacitors</i>, and <i>inductors</i>.<br/><br/>
The schematic symbols for these three electrical components are shown in
Fig. B.3. Electrical components can be connected together to form an electric circuit. Currents can be controlled by the appropriate choice of components and interconnections in the circuit. An example of an electric circuit is shown in Fig. B.4. Various techniques have been developed to analyze such circuits and to calculate voltages and currents at all the points in the circuit.<br/><br/> <b>B.5.1 Resistor</b><br/><br/>
The resistor is a circuit component that opposes current flow. Resistance (<i>R</i>) is measured in units of ohm (<i></i>). The relation between current (<i>I </i>) and <b>FIGURE B.3 </b> Circuit components.<br/><br/> <b>FIGURE B.4 </b> Example of an electric circuit.<br/><br/> <br/><img src="./tmp/raw_656f49f53d8d3c5343596b2cc8b234fc-310_1.jpg"/><br/> <br/><img src="./tmp/raw_656f49f53d8d3c5343596b2cc8b234fc-310_2.png"/><br/>
Section B.5 <b>Electric Circuits</b>
voltage (<i>V </i>) is given by Ohm’s law, which is<br/><br/> <i>V </i> <i>IR</i><br/><br/>
(B.2)<br/><br/>
Materials that present a very small resistance to current flow are called <i>conductors</i>. Materials with a very large resistance are called <i>insulators</i>. A flow of current through a resistor is always accompanied by power dissipation as electrical energy is converted to heat. The power (<i>P</i>) dissipated in a resistor is given by <i>P </i> <i>I</i>2<i>R</i><br/><br/>
(B.3)<br/><br/>
The inverse of resistance is called <i>conductance</i>, which is usually designated by the symbol <i>G</i>. Conductance is measured in units of <i>mho</i>, also called <i>Siemens</i>.<br/><br/>The relationship between conductance and resistance is<br/><br/> <i>G </i> 1<br/><br/>
(B.4)<br/><br/> <i>R</i> <b>B.5.2 Capacitor</b><br/><br/>
The capacitor is a circuit element that stores electric charges. In its simplest form it consists of two conducting plates separated by an insulator (see Fig. B.5). Capacitance (<i>C</i>) is measured in <i>farads</i>. The relation between the stored charge (<i>Q</i>), and the voltage across the capacitor is given by <i>Q </i> <i>CV</i><br/><br/>
(B.5)<br/><br/>
In a charged capacitor, positive charges are on one side of the plate, and
negative charges are on the other. The amount of energy (<i>E</i>) stored in such a configuration is given by <i>E </i> 1 <i>CV </i>2<br/><br/>
(B.6)<br/><br/>
2<br/><br/> <b>FIGURE B.5 </b> A simple capacitor.<br/><br/> <br/><img src="./tmp/raw_656f49f53d8d3c5343596b2cc8b234fc-311_1.jpg"/><br/> <br/><img src="./tmp/raw_656f49f53d8d3c5343596b2cc8b234fc-311_2.png"/><br/>
Appendix B <b>Review of Electricity</b> <b>B.5.3 Inductor</b><br/><br/>
The <i>inductor </i>is a device that opposes a change in the current flowing through it. Inductance is measured in units called <i>henry</i>.<br/><br/> <b>B.6</b> <b>Voltage and Current Sources</b><br/><br/>
Voltages and currents can be produced by various batteries and generators.<br/><br/>Batteries are based on chemical reactions that result in a separation of positive and negative charges within a material. Generators produce a voltage by the motion of conductors in magnetic fields. The circuit symbols for these sources are shown in Fig. B.6.<br/><br/> <b>B.7</b><br/><br/> <b>Electricity and Magnetism</b><br/><br/>
Electricity and magnetism are related phenomena. A changing electric field always produces a magnetic field, and a changing magnetic field always produces an electric field. All electromagnetic phenomena can be traced to this basic interrelationship. A few of the consequences of this interaction follow:<br/><br/> <b>1. </b>An electric current always produces a magnetic field at a direction
perpendicular to the current flow.<br/><br/> <b>2. </b>A current is induced in a conductor that moves perpendicular to a
magnetic field.<br/><br/> <b>3. </b>An oscillating electric charge emits electromagnetic waves at the
frequency of oscillation. This radiation propagates away from the source at the speed of light. Radio waves, light, and X-rays are examples of electromagnetic radiation.<br/><br/> <b>FIGURE B.6 </b> Circuit symbols for a battery and a generator.<br/><br/>
<b>Appendix C</b><br/><br/>
Review of Optics<br/><br/> <b>C.1</b> <b>Geometric Optics</b><br/><br/>
The characteristics of optical components, such as mirrors and lenses, can be completely derived from the wave properties of light. Such detailed calculations, however, are usually rather complex because one has to keep track of the wave front along every point on the optical component. It is possible to simplify the problem if the optical components are much larger than the wavelength of light. The simplification entails neglecting some of the wave properties of light and considering light as a ray traveling perpendicular to the wave front (Fig. C.1). In a homogeneous medium, the ray of light travels in a straight line; it alters direction only at the interface between two media. This simplified approach is called <i>geometric optics</i>.<br/><br/>
The speed of light depends on the medium in which it propagates. In
vacuum, light travels at a speed of 3 × 108 m/sec. In a material medium, the speed of light is always less. The speed of light in a material is characterized by the index of refraction (<i>n</i>) defined as <i>n </i> <i>c</i><br/><br/>
(C.1)<br/><br/> <i>v</i>
where <i>c </i>is the speed of light in vacuum and <i>v </i>is the speed in the material.<br/><br/>When light enters from one medium into another, its direction of propagation is changed (see Fig. C.2). This phenomenon is called <i>refraction</i>. The relationship between the angle of incidence (<i>θ</i>1) and the angle of refraction (<i>θ</i>2)<br/><br/> <b>293</b><br/><br/> <br/><img src="./tmp/raw_656f49f53d8d3c5343596b2cc8b234fc-313_1.jpg"/><br/> <br/><img src="./tmp/raw_656f49f53d8d3c5343596b2cc8b234fc-313_2.png"/><br/>
Appendix C <b>Review of Optics</b> <b>FIGURE C.1 </b> Light rays perpendicular to the wave front.<br/><br/>
is given by
sin <i>θ</i>1 <i>n</i>2<br/><br/>
(C.2)<br/><br/>
sin <i>θ</i>2<br/><br/> <i>n</i>1<br/><br/>
The relationship in Eq. C.2 is called <i>Snell’s law</i>. As shown in Fig. C.2, some of the light is also reflected. The angle of reflection is always equal to the angle of incidence.<br/><br/>
In Fig. C.2a, the angle of incidence <i>θ</i>1 for the entering light is shown to
be greater than the angle of refraction <i>θ</i>2. This implies that <i>n</i>2 is greater than <i>n</i>1 as would be the case for light entering from air into glass, for example (see Eq. C.2). If, on the other hand, the light originates in the medium of higher refractive index, as shown in Fig. C.2b, then the angle of incidence <i>θ</i>1 is smaller than the angle of refraction <i>θ</i>2. At a specific value of angle <i>θ</i>1 called the <i>critical angle </i>(designated by the symbol <i>θc</i>), the light emerges tangent to the surface, that is, <i>θ</i>2 90◦. At this point, sin <i>θ</i>2 1 and, therefore, sin <i>θ</i>1 sin <i>θc </i> <i>n</i>2<i>/n</i>1. Beyond this angle, that is for <i>θ</i>1 <i>> θc</i>, light originating in the medium of higher refractive index does not emerge from the medium. At the interface, all the light is reflected back into the medium. This phenomenon is called <i>total internal reflection</i>. For glass, <i>n</i>2 is typically 1.5, and the critical angle at the glass-air interface is sin <i>θc </i> 1<i>/</i>1<i>.</i>5 or <i>θc </i> 42◦.<br/><br/>
Transparent materials such as glass can be shaped into lenses to alter the
direction of light in a specific way. Lenses fall into two general categories: converging lenses and diverging lenses. A converging lens alters the direction of light so that the rays are brought together. A diverging lens has the opposite effect; it spreads the light rays apart.<br/><br/>
Using geometric optics, we can calculate the size and shape of images
formed by optical components, but we cannot predict the inevitable blurring of images which occurs as a result of the wave nature of light.<br/><br/> <br/><img src="./tmp/raw_656f49f53d8d3c5343596b2cc8b234fc-314_1.jpg"/><br/> <br/><img src="./tmp/raw_656f49f53d8d3c5343596b2cc8b234fc-314_2.png"/><br/>
Section C.2 <b>Converging Lenses</b> <b>FIGURE C.2 </b> (Top) Reflection and refraction of light. (Bottom) Total internal
reflection.<br/><br/> <b>C.2</b> <b>Converging Lenses</b><br/><br/>
A simple converging lens is shown in Fig. C.3. This type of a lens is called a convex lens.<br/><br/>
Parallel rays of light passing through a convex lens converge at a point
called the <i>principal focus of the lens</i>. The distance of this point from the lens is called the <i>focal length f</i>. Conversely, light from a point source at the focal point emerges from the lens as a parallel beam. The focal length of the lens is
<br/><img src="./tmp/raw_656f49f53d8d3c5343596b2cc8b234fc-315_1.jpg"/><br/> <br/><img src="./tmp/raw_656f49f53d8d3c5343596b2cc8b234fc-315_2.png"/><br/>
Appendix C <b>Review of Optics</b> <b>FIGURE C.3 </b> The convex lens illuminated (a) by parallel light, (b) by point source at
the focus.<br/><br/>
determined by the index of refraction of the lens material and the curvature of the lens surfaces. We adopt the following convention in discussing lenses.<br/><br/> <b>1. </b>Light travels from left to right.<br/><br/><b>2. </b>The radius of curvature is positive if the curved surface encountered by
the light ray is convex; it is negative if the surface is concave.<br/><br/>
It can be shown that for a thin lens the focal length is given by
<br/><br/>
1 <br/><br/>
1<br/><br/>
(<i>n </i>− 1)
− 1<br/><br/>
(C.3)<br/><br/> <i>f</i><br/><br/> <i>R</i>1<br/><br/> <i>R</i>2
where <i>R</i>1 and <i>R</i>2 are the curvatures of the first and second surfaces, respectively (Fig. C.4). In Fig. C.4, <i>R</i>2 is a negative number.<br/><br/>
Focal length is a measure of the converging power of the lens. The shorter
the focal length, the more powerful the lens. The focusing power of a lens is
<br/><img src="./tmp/raw_656f49f53d8d3c5343596b2cc8b234fc-316_1.jpg"/><br/> <br/><img src="./tmp/raw_656f49f53d8d3c5343596b2cc8b234fc-316_2.png"/><br/>
Section C.2 <b>Converging Lenses</b> <b>FIGURE C.4 </b> Radius of curvature defined for a lens.<br/><br/>
often expressed in diopters defined as<br/><br/>
Focusing power <br/><br/>
1<br/><br/>
(diopters)<br/><br/>
(C.4)<br/><br/> <i>f </i>(meters)
If two thin lenses with focal lengths <i>f</i>1 and <i>f</i>2, respectively, are placed close together, the focal length <i>fT </i>of the combination is
1 1 + 1<br/><br/>
(C.5)<br/><br/> <i>fT</i><br/><br/> <i>f</i>1<br/><br/> <i>f</i>2<br/><br/>
Light from a point source located beyond the focal length of the lens is
converged to a point image on the other side of the lens (Fig. C.5a). This type of an image is called a <i>real image </i>because it can be seen on a screen placed at the point of convergence.<br/><br/>
If the distance between the source of light and the lens is less than the focal
length, the rays do not converge. They appear to emanate from a point on the source side of the lens. This apparent point of convergence is called a <i>virtual<br/>image </i>(Fig. C.5b).<br/><br/>
For a thin lens, the relationship between the source and the image distances
from the lens is given by
1 + 1 1<br/><br/>
(C.6)<br/><br/> <i>p</i><br/><br/> <i>q</i><br/><br/> <i>f</i><br/><br/>
Here <i>p </i>and <i>q</i>, respectively, are the source and the image distances from the lens. By convention, <i>q </i>in this equation is taken as positive if the image is formed on the side of the lens opposite to the source and negative if the image is formed on the source side.<br/><br/>
Light rays from a source very far from the lens are nearly parallel; there
fore, by definition we would expect them to be focused at the principal focal point of the lens. This is confirmed by Eq. C.6, which shows that as <i>p </i>becomes very large (approaches infinity), <i>q </i>is equal to <i>f</i>.<br/><br/> <br/><img src="./tmp/raw_656f49f53d8d3c5343596b2cc8b234fc-317_1.jpg"/><br/> <br/><img src="./tmp/raw_656f49f53d8d3c5343596b2cc8b234fc-317_2.png"/><br/>
Appendix C <b>Review of Optics</b> <b>FIGURE C.5 </b> Image formation by a convex lens: (a) real image, (b) virtual image.<br/><br/>
If the source is displaced a distance <i>x </i>from the axis, the image is formed
at a distance <i>y </i>from the axis such that <i>y </i> <i>q</i><br/><br/>
(C.7)<br/><br/> <i>x</i><br/><br/> <i>p</i><br/><br/>
This is illustrated for a real image in Fig. C.6. The relationship between <i>p </i>and <i>q </i>is still given by Eq. C.6.<br/><br/> <b>C.3</b> <b>Images of Extended Objects</b><br/><br/>
So far we have discussed only the formation of images from point sources.<br/><br/>The treatment, however, is easily applied to objects of finite size.<br/><br/>
When an object is illuminated, light rays emanate from every point on the
object (Fig. C.7a). Each point on the object plane a distance <i>p </i>from the lens
<br/><img src="./tmp/raw_656f49f53d8d3c5343596b2cc8b234fc-318_1.jpg"/><br/> <br/><img src="./tmp/raw_656f49f53d8d3c5343596b2cc8b234fc-318_2.png"/><br/> <br/><img src="./tmp/raw_656f49f53d8d3c5343596b2cc8b234fc-318_3.jpg"/><br/> <br/><img src="./tmp/raw_656f49f53d8d3c5343596b2cc8b234fc-318_4.png"/><br/>
Section C.3 <b>Images of Extended Objects</b> <b>FIGURE C.6 </b> Image formation off axis.<br/><br/> <b>FIGURE C.7 </b> Image of an object: (a) real, (b) virtual.<br/><br/>
is imaged at the corresponding point on the image plane a distance <i>q </i>from the lens. The relationship between the object and the image distances is given by Eq. C.6. As shown in Fig. C.7, real images are inverted and virtual images are upright. The ratio of image to object height is given by
Image height −<i>q</i><br/><br/>
(C.8)<br/><br/>
Object height <i>p</i><br/><br/> <br/><img src="./tmp/raw_656f49f53d8d3c5343596b2cc8b234fc-319_1.jpg"/><br/> <br/><img src="./tmp/raw_656f49f53d8d3c5343596b2cc8b234fc-319_2.png"/><br/>
Appendix C <b>Review of Optics</b> <b>FIGURE C.8 </b> A diverging lens.<br/><br/> <b>C.4</b> <b>Diverging Lenses</b><br/><br/>
An example of a diverging lens is the concave lens shown in Fig. C.8. Parallel light diverges after passing through a concave lens. The apparent source of origin for the diverging rays is the focal point of the concave lens. All the equations we have presented for the converging lens apply in this case also, provided the sign conventions are obeyed. From Eq. C.3, it follows that the focal length for a diverging lens is always negative and the lens produces only virtual images (Fig. C.8).<br/><br/> <b>C.5</b><br/><br/> <b>Lens Immersed in a Material Medium</b><br/><br/>
The lens equations that we have presented so far apply in the case when the lens is surrounded by air that has a refraction index of approximately 1. Let us now consider the more general situation shown in Fig. C.9, which we will need in our discussion of the eye. The lens here is embedded in a medium that has a different index of refraction (<i>n</i>1 and <i>n</i>2) on each side of the lens. It can be shown (see [15-3]) that under these conditions the relationship between the object and the image distances is <i>n</i>1 + <i>n</i>2 <i>nL </i>−<i>n</i>1 − <i>nL </i>− <i>n</i>2<br/><br/>
(C.9)<br/><br/> <i>p</i><br/><br/> <i>q</i><br/><br/> <i>R</i>1<br/><br/> <i>R</i>2<br/><br/> <br/><img src="./tmp/raw_656f49f53d8d3c5343596b2cc8b234fc-320_1.jpg"/><br/> <br/><img src="./tmp/raw_656f49f53d8d3c5343596b2cc8b234fc-320_2.png"/><br/>
Section C.5 <b>Lens Immersed in a Material Medium</b> <b>FIGURE C.9 </b> Lens immersed in a material medium.<br/><br/>
Here <i>nL </i>is the refraction index of the lens material. The effective focal
length in this case is
1 <i>n</i>2 −<i>n</i>1 − <i>nL </i>−<i>n</i>2<br/><br/>
(C.10)<br/><br/> <i>f</i><br/><br/> <i>R</i>1<br/><br/> <i>R</i>2<br/><br/>
Note that in air <i>n</i>1 <i>n</i>2 1 and Eq. C.10 reduces to Eq. C.3.<br/><br/>
The lens equations we have presented in this appendix assume that the
lenses are thin. This is not a fully valid assumption for the lenses in the eye.<br/><br/>Nevertheless these equations are adequate for our purposes.<br/><br/> <br/><br/>
Bibliography<br/><br/> <b>Chapters 1 to 6</b>
6-1 Alexander, R. McNeill. <i>Animal Mechanics</i>. London: Sidgwick and
Jackson, 1968.<br/><br/>
6-2 Baez, Albert V. <i>The New College Physics: A Spiral Approach</i>. San
Francisco, CA: W. H. Freeman and Co., 1967.<br/><br/>
6-3 Blesser, William B. <i>A Systems Approach to Biomedicine</i>. New York,
NY: McGraw-Hill Book Co., 1969.<br/><br/>
6-4 Bootzin, David, and Muffley, Harry C. <i>Biomechanics</i>. New York, NY:
Plenum Press, 1969.<br/><br/>
6-5 Cameron, J. R., Skofronick, J. G., and Grant, R. M. <i>Physics of the Body</i>.<br/><br/>
Madison, WI: Medical Physics Publishing, 1992.<br/><br/>
6-6 Chapman, R. F. <i>The Insects</i>. New York, NY: American Elsevier Pub
lishing Co., 1969.<br/><br/>
6-7 Conaghan, P. G. “Update on Osteoarthritis Part 1: Current Concepts and
the Relation to Exercise,” <i>British Journal of Sports Medicine</i>, 36 (2002), 330–333.<br/><br/>
6-8 Cooper, John M., and Glassow, Ruth B. <i>Kinesiology, 3rd </i>ed. St. Louis,
MO: The C. V. Mosby Co., 1972.<br/><br/>
6-9 Cromer, A. H. <i>Physics for the Life Sciences</i>. New York, NY: McGraw
Hill Book Co., 1974.<br/><br/> <b>302</b><br/><br/> <b>Bibliography</b>
6-10 Frankel, Victor H., and Burstein, Albert H. <i>Orthopaedic Biomechanics</i>.<br/><br/>
Philadelphia, PA: Lea and Febiger, 1970.<br/><br/>
6-11 French, A. P. <i>Newtonian Mechanics</i>. New York, NY: W. W. Norton &
Co., Inc., 1971.<br/><br/>
6-12 Frost, H. M. <i>An Introduction to Biomechanics</i>. Springfield, IL: Charles
C Thomas, Publisher, 1967.<br/><br/>
6-13 Gray, James. <i>How Animals Move</i>. Cambridge, UK: University Press,
1953.<br/><br/>
6-14 Heglund, N. C., Willems, P. A., Penta, M., and Cavagna, G. A. “Energy
saving Gait Mechanics with Head-supported Loads,” <i>Nature</i>, 375 (1995), 52–54.<br/><br/>
6-15 Hobbie, R. K. <i>Intermediate Physics for Medicine and Biology</i>. New
York, NY: Springer, 1997.<br/><br/>
6-16 Ingber, D. E. “The Architecture of Life,” <i>Scientific American </i>(January
1998), 47.<br/><br/>
6-17 Jensen, Clayne R., and Schultz, Gordon W. <i>Applied Kinesiology</i>. New
York, NY: McGraw-Hill Book Co., 1970.<br/><br/>
6-18 Kenedi, R. M., ed. <i>Symposium on Biomechanics and Related Bioengi-</i> <i>neering Topics</i>. New York, NY: Pergamon Press, 1965.<br/><br/>
6-19 Lauk, M., Chow, C. C., Pavlik, A. E., and Collins, J. J. “Human Balance
out of Equilibrium: Nonequilibrium Statistical Mechanics in Posture Control,” <i>The American Physical Society</i>, 80 (January 1998), 413.<br/><br/>
6-20 Latchaw, Marjorie, and Egstrom, Glen. <i>Human Movement</i>. Englewood
Cliffs, NJ: Prentice-Hall, 1969.<br/><br/>
6-21 McCormick, Ernest J. <i>Human Factors Engineering</i>. New York, NY:
McGraw-Hill Book Co., 1970.<br/><br/>
6-22 Mathews, Donald K., and Fox, Edward L. <i>The Physiological Basis of</i> <i>Physical Education and Athletics</i>. Philadelphia, PA: W. B. Saunders and Co., 1971.<br/><br/>
6-23 Morgan, Joseph. <i>Introduction to University Physics</i>, Vol. 1, 2nd ed.<br/><br/>
Boston, MA: Allyn and Bacon, 1969.<br/><br/>
6-24 Novacheck, T. F. “The Biomechanics of Running,” <i>Gait and Posture</i>, 7
(1998), 77–95.<br/><br/> <br/><br/> <b>Bibliography</b>
6-25 Offenbacher, Elmer L. “Physics and the Vertical Jump,” <i>American Jour-</i> <i>nal of Physics</i>, 38 (July 1970), 829–836.<br/><br/>
6-26 Richardson, I. W., and Neergaard, E. B. <i>Physics for Biology and Medi-</i> <i>cine</i>. New York, NY: John Wiley & Sons, 1972.<br/><br/>
6-27 Roddy, E. et al.<br/><br/>
“Evidence-based Recommendations for the Role
of Exercise in the Management of Osteoarthritis,” <i>Rheumatology</i>, 44 (2005), 67–73.<br/><br/>
6-28 Rome, L. C. “Testing a Muscle’s Design,” <i>American Scientist</i>, 85 (July–
August 1997), 356.<br/><br/>
6-29 Strait, L. A., Inman, V. T., and Ralston, H. J. “Sample Illustrations of
Physical Principles Selected from Physiology and Medicine,” <i>American<br/>Journal of Physics</i>, 15 (1947), 375.<br/><br/>
6-30 Sutton, Richard M. “Two Notes on the Physics of Walking,” <i>American</i> <i>Journal of Physics</i>, 23 (1955), 490.<br/><br/>
6-31 Wells, Katherine F. <i>Kinesiology: The Scientific Basis of Human Motion</i>.<br/><br/>
Philadelphia, PA: W. B. Saunders and Co., 1971.<br/><br/>
6-32 Williams, M., and Lissner, H. R. <i>Biomechanics of Human Motion</i>. Phil
adelphia, PA: W. B. Saunders Co., 1962.<br/><br/>
6-33 Winter, D. A. “Human Balance and Posture Control during Standing
and Walking,” <i>Gait & Posture</i>, 3 (1995), 193–214.<br/><br/>
6-34 Wolff, H. S. <i>Biomedical Engineering</i>. New York, NY: McGraw-Hill
Book Co., 1970.<br/><br/> <b>Chapter 7</b>
7-1 Alexander, R. McNeill. <i>Animal Mechanics</i>. London: Sidgwick and
Jackson, 1968.<br/><br/>
7-2 Bush, J. W. M., and Hu, D. L. “Walking on Water: Biolocomotion at the
Interface,” <i>Annu. Rev. Fluid Mech</i>., 38 (2006), 339–369.<br/><br/>
7-3 Chapman, R. F. <i>The Insects</i>. New York, NY: American Elsevier Pub
lishing Co., 1969.<br/><br/>
7-4 Foth, H. D., and Turk, L. M. <i>Fundamentals of Soil Science</i>. New York,
NY: John Wiley & Sons, 1972.<br/><br/>
7-5 Gamow, G., and Ycas, M. <i>Mr. Tomkins Inside Himself</i>. New York, NY:
The Viking Press, 1967.<br/><br/> <b>Bibliography</b>
7-6 Hobbie, R. K. <i>Intermediate Physics for Medicine and Biology</i>. New
York, NY: Springer, 1997.<br/><br/>
7-7 Morgan, J. <i>Introduction to University Physics</i>, 2nd ed. Boston, MA:
Allyn and Bacon, 1969.<br/><br/>
7-8 Murray, J. M., and Weber, A. “The Cooperative Action of Muscle Pro
teins,” <i>Scientific American </i>(February 1974), 59.<br/><br/>
7-9 Rome, L. C. “Testing a Muscle’s Design,” <i>American Scientist</i>, 85 (July–
August 1997), 356.<br/><br/> <b>Chapter 8</b>
8-1 Ackerman, E. <i>Biophysical Sciences</i>. Englewood Cliffs, NJ: Prentice
Hall, 1962.<br/><br/>
8-2 Hademenos, G. J. “The Biophysics of Stroke,” <i>American Scientist</i>, 85
(May–June 1997), 226.<br/><br/>
8-3 Morgan, J. <i>Introduction to University Physics</i>, 2nd ed. Boston, MA:
Allyn and Bacon, 1969.<br/><br/>
8-4 Myers, G. H., and Parsonnet, V. <i>Engineering in the Heart and Blood</i> <i>Vessels</i>. New York, NY: John Wiley & Sons, 1969.<br/><br/>
8-5 Richardson, I. W., and Neergaard, E. B. <i>Physics for Biology and Medi-</i> <i>cine</i>. New York, NY: John Wiley & Sons, 1972.<br/><br/>
8-6 Ruch, T. C., and Patton, H. D., eds. <i>Physiology and Biophysics</i>. Philadel
phia, PA: W. B. Saunders Co., 1965.<br/><br/>
8-7 Strait, L. A., Inman, V. T., and Ralston, H. J. “Sample Illustrations of
Physical Principles Selected from Physiology and Medicine,” <i>American<br/>Journal of Physics</i>, 15 (1947), 375.<br/><br/> <b>Chapters 9 to 11</b>
11-1 Ackerman, E. <i>Biophysical Science</i>, Englewood Cliffs, NJ: Prentice-Hall,
1962.<br/><br/>
11-2 Angrist, S. W. “Perpetual Motion Machines,” <i>Scientific American</i>
(January 1968), 114.<br/><br/> <br/><br/> <b>Bibliography</b>
11-3 Atkins, P. W. <i>The 2nd Law</i>. New York, NY: W. H. Freeman and Co.,
1994.<br/><br/>
11-4 Brown, J. H. U., and Gann, D. S., eds. <i>Engineering Principles in Physi-</i> <i>ology</i>, Vols. 1 and 2. New York, NY: Academic Press, 1973.<br/><br/>
11-5 Casey, E. J. <i>Biophysics</i>, New York, NY: Reinhold Publishing Corp.,
1962.<br/><br/>
11-6 Loewenstein, W. R. <i>The Touchstone of Life: Molecular Information,</i> <i>Cell Communication, and the Foundations of Life</i>. New York, NY: Oxford University Press, 1999.<br/><br/>
11-7 Morgan, J. <i>Introduction to University Physics</i>, 2nd ed. Boston, MA:
Allyn and Bacon, 1969.<br/><br/>
11-8 Morowitz, H. J. <i>Energy Flow in Biology</i>. New York, NY: Academic
Press, 1968.<br/><br/>
11-9 Peters, R. H. <i>The Ecological Implications of Body Size</i>. Cambridge
University Press, 1983.<br/><br/>
11-10 Rose, A. H., ed. <i>Thermobiology</i>. London: Academic Press, 1967.<br/><br/>
11-11 Ruch, T. C., and Patton, H. D., eds. <i>Physiology and Biophysics</i>. Phila
delphia, PA: W. B. Saunders Co., 1965.<br/><br/>
11-12 Schurch, S., Lee, M., and Gehr, P. “Pulmonary Surfactant: Surface
Properties and Function of Alveolar and Airway Surfactant,” <i>Pure &<br/>Applied Chemistry</i>, 64(11) (1992), 1745–1750.<br/><br/>
11-13 Stacy, R. W., Williams, D. T., Worden, R. E., and McMorris, R. W.<br/><br/> <i>Biological and Medical Physics</i>. New York, NY: McGraw-Hill Book Co., 1955.<br/><br/> <b>Chapter 12</b>
12-1 Alexander, R. McNeil <i>Animal Mechanics</i>. Seattle, WA: University of
Washington Press, 1968.<br/><br/>
12-2 Brown, J. H. U., and Gann, D. S., eds. <i>Engineering Principles in Phys-</i> <i>iology</i>, Vols. 1 and 2. New York, NY: Academic Press, 1973.<br/><br/>
12-3 Burns, D. M., and MacDonald, S. G. G. <i>Physics for Biology and</i> <i>Pre-Medical Students</i>. Reading, MA: Addison-Wesley Publishing Co., 1970.<br/><br/> <b>Bibliography</b>
12-4 Casey, E. J. <i>Biophysics</i>. New York, NY: Reinhold Publishing Corp.,
1962.<br/><br/>
12-5 Cromwell, L., Weibell, F.J., Pfeiffer, E. A., and Usselman, L. B. <i>Bio-</i> <i>medical Instrumentation and Measurements</i>. Englewood Cliffs, NJ: Prentice-Hall, 1973.<br/><br/>
12-6 Marshall, J. S., Pounder, E. R., and Stewart, R. W. <i>Physics</i>, 2nd ed.<br/><br/>
New York, NY: St. Martin’s Press, 1967.<br/><br/>
12-7 Mizrach, A., Hetzroni, A., Mazor, M., Mankin, R. W., Ignat, T.,
Grinshpun, J., Epsky, N. D., Shuman, D., and Heath, R. R. “Acoustic Trap for Female Mediterranean Fruit Flies,” <i>Transactions of the Asae<br/></i>48(2005), 2017–2022.<br/><br/>
12-8 Morgan, J. <i>Introduction to University Physics</i>, 2d ed. Boston, MA:
Allyn and Bacon, 1969.<br/><br/>
12-9 Richardson, I. W., and Neergaard, E. B. <i>Physics for Biology and Medi-</i> <i>cine</i>. New York, NY: John Wiley & Sons, 1972.<br/><br/>
12-10 Stacy, R. W., Williams, D. T., Worden, R. E., and McMorris, R. W.<br/><br/> <i>Biological and Medical Physics</i>. New York, NY: McGraw-Hill Book Co., 1955.<br/><br/> <b>Chapter 13</b>
13-1 Ackerman, E. <i>Biophysical Science</i>. Englewood Cliffs, NJ: Prentice-Hall,
Inc., 1962.<br/><br/>
13-2 Bassett, C. A. L. “Electrical Effects in Bone,” <i>Scientific American</i>
(October 1965), 18.<br/><br/>
13-3 Bullock, T. H. “Seeing the World through a New Sense: Electrorecep
tion in Fish,” <i>American Scientist </i>61 (May–June 1973), 316.<br/><br/>
13-4 Delchar, T. A. <i>Physics in Medical Diagnosis</i>. New York, NY: Chapman
and Hall, 1997.<br/><br/>
13-5 Hobbie, R. K. “Nerve Conduction in the Pre-Medical Physics Course,” <i>American Journal of Physics</i>, 41 (October 1973), 1176.<br/><br/>
13-6 Hobbie, R. K. <i>Intermediate Physics for Medicine and Biology</i>. New
York, NY: Springer, 1997.<br/><br/> <br/><br/> <b>Bibliography</b>
13-7 Katz, B. “How Cells Communicate,” <i>Scientific American </i>(September
1961), 208.<br/><br/>
13-8 Katz, B. <i>Nerve Muscle and Synapse</i>. New York, NY: McGraw-Hill,
Inc., 1966.<br/><br/>
13-9 Miller, W. H., Ratcliff, F., and Hartline, H. K. “How Cells Receive
Stimuli,” <i>Scientific American </i>(September 1961), 223.<br/><br/>
13-10 Scott, B. I. H. “Electricity in Plants,” <i>Scientific American </i>(October
1962), 107.<br/><br/> <b>Chapter 14</b>
14-1 Ackerman, E. <i>Biophysical Science</i>. Englewood Cliffs, NJ: Prentice-Hall,
Inc., 1962.<br/><br/>
14-2 Blesser, W. B. <i>A Systems Approach to Biomedicine</i>. New York, NY:
McGraw-Hill Book Co., 1969.<br/><br/>
14-3 Cromwell, L., Weibell, F. J., Pfeiffer, E. A., and Usselman, L. B. <i>Bio-</i> <i>medical Instrumentation and Measurements</i>. Englewood Cliffs, NJ: Prentice-Hall, Inc., 1973.<br/><br/>
14-4 Davidovits, P. <i>Communication</i>. New York, NY: Holt, Rinehart and
Winston, 1972.<br/><br/>
14-5 Loizou, P. C. “Mimicking the Human Ear,” <i>IEEE Signal Processing</i> <i>Magazine </i>(September 1998), 101–130.<br/><br/>
14-6 Scher, A. M. “The Electrocardiogram,” <i>Scientific American </i>(November
1961), 132.<br/><br/> <b>Chapter 15</b>
15-1 Ackerman, E. <i>Biophysical Science</i>. Englewood Cliffs, NJ: Prentice
Hall, Inc., 1962.<br/><br/>
15-2 Davidovits, P., and Egger, M. D. “Microscopic Observation of Endothe
lial Cells in the Cornea of an Intact Eye,” <i>Nature </i>244 (1973), 366.<br/><br/>
15-3 Katzir, A. “Optical Fibers in Medicine,” <i>Scientific American </i>(May
1989) 260, 120.<br/><br/> <b>Bibliography</b>
15-4 Marshall, J. S., Pounder, E. R., and Stewart, R. W. <i>Physics</i>, 2nd ed. New
York, NY: St. Martin’s Press, 1967.<br/><br/>
15-5 Muntz, W. R. A. “Vision in Frogs,” <i>Scientific American </i>(March 1964),
110.<br/><br/>
15-6 Ruch, T. C., and Patton, H. D. <i>Physiology and Biophysics</i>. Philadelphia,
PA: W. B. Saunders and Co., 1965.<br/><br/>
15-7 Wald, George. “Eye and the Camera,” <i>Scientific American </i>(August
1950), 32.<br/><br/> <b>Chapters 16 and 17</b>
16-1 Ackerman, E. <i>Biophysical Sciences</i>. Englewood Cliffs, NJ: Prentice
Hall, Inc., 1962.<br/><br/>
16-2 Burns, D. M., and MacDonald, S. G. G. <i>Physics for Biology and Pre-</i> <i>Medical Students</i>. Reading, MA: Addison-Wesley Publishing Co., 1970.<br/><br/>
16-3 Delchar, T. A. <i>Physics in Medical Diagnosis</i>. New York, NY: Chapman
and Hall, 1997.<br/><br/>
16-4 Dowsett, D. J., Kenny, P. A., and Johnston, R. E. <i>The Physics of</i> <i>Diagnostic Imaging</i>. New York, NY: Chapman and Hall Medical, 1998.<br/><br/>
16-5 Hobbie, R. K. <i>Intermediate Physics for Medicine and Biology</i>. New
York, NY: Springer, 1997.<br/><br/>
16-6 Pizer, V. “Preserving Food with Atomic Energy,” United States Atomic
Energy Commission Division of Technical Information, 1970.<br/><br/>
16-7 Pykett, I. L. “NMR Imaging in Medicine,” <i>Scientific American </i>(May
1982), 78.<br/><br/>
16-8 Schr¨odinger, E. <i>“What Is Life?” and Other Scientific Essays</i>. Garden
City, NY: Anchor Books, Doubleday and Co., 1956.<br/><br/>
Answers to Numerical
Exercises<br/><br/> <b>Chapter 1</b>
1-1(b). <i>F </i> 254 N (57<i>.</i>8 lb) 1-3. <i>θ </i> 72<i>.</i>6◦ 1-4. Maximum weight 335 N (75 lb) 1-5(a). <i>Fm </i> 2253 N (508 lb)<i>, Fr </i> 2386 N (536 lb) 1-6. <i>Fm </i> 720 N<i>, Fr </i> 590 N 1-7(a). <i>Fm </i> 2160 N<i>, Fr </i> 1900 N 1-8. <i>Fm </i> 103 N<i>, Fr </i> 84 N
1-10. <i>x </i> 19<i>.</i>6 cm<i>, v </i>of tendon 4 cm/sec, <i>v </i>of weight 38 cm/sec 1-11. <i>Fm </i> 0<i>.</i>47 W<i>, Fr </i> 1<i>.</i>28 W 1-12(a). <i>Fm </i> 2000 N<i>, Fr </i> 2200 N; (b). <i>Fm </i> 3220 N<i>, Fr </i> 3490 N 1-13. <i>FA </i> 2<i>.</i>5 W<i>, FT </i> 3<i>.</i>5 W<br/><br/> <b>Chapter 2</b>
2-1(a). Distance 354 m; (b). Independ of mass 2-2(a). <i>μ </i> 0<i>.</i>067 2-3(a). <i>μ </i> 1<i>.</i>95; (b). with <i>μ </i> 1<i>.</i>0<i>, θ </i> 39<i>.</i>4◦, with <i>μ </i> 0<i>.</i>01<i>, θ </i> 0<i>.</i>6◦<br/><br/> <b>Chapter 3</b>
3-1. <i>P </i> 4120 watt 3-2. <i>H </i> 126 cm<br/><br/> <b>310</b>
3-3. <i>Fr </i> 1<i>.</i>16 W<i>, θ </i> 65<i>.</i>8◦ 3-4. <i>T </i> 0<i>.</i>534 sec 3-5(a). <i>R </i> 13<i>.</i>5 m; (b). H 3<i>.</i>39 m; (c). 4.08 sec 3-6. <i>v </i> 8<i>.</i>6 m/sec 3-7. <i>r </i> 1<i>.</i>13 m 3-8(a). <i>v </i> 8<i>.</i>3 m/sec; (b) 16.6 cm/sec 3-9. Energy expended/sec 1350 J/sec
3-10. <i>P </i> 371 watt<br/><br/> <b>Chapter 4</b>
4-2. <i>F </i> 10<i>.</i>1 N 4-3. <i>ω </i> 1<i>.</i>25 rad/sec; linear velocity 6<i>.</i>25 m/sec 4-4. <i>ω </i> 1<i>.</i>25 rad/sec 33<i>.</i>9 rpm 4-5. <i>v </i> 62<i>.</i>8 m/sec 4-6. Speed 1<i>.</i>13 m/sec 4<i>.</i>07 km/h 2<i>.</i>53 mph 4-7. <i>T </i> 1<i>.</i>6 sec 4-8. <i>E </i> 1<i>.</i>64 mv2 4-9. Fall time 1 sec<br/><br/> <b>Chapter 5</b>
5-1. <i>v </i> 2<i>.</i>39 m/sec (5<i>.</i>3 mph) 5-2. <i>v </i> 8 m/sec; with 1 cm2area <i>v </i> 2 m/sec 5-3. <i>h </i> 5<i>.</i>1 m 5-4. <i>t </i> 3 × 10−2 sec 5-5. <i>v </i> 17 m/sec (37 mph) 5-6. Force/cm2 4<i>.</i>6 × 106 dyn/cm2, yes 5-7. <i>v </i> 0<i>.</i>7 m/sec, no<br/><br/> <b>Chapter 6</b>
6-1. <i>F </i> 2 W 6-2. <i> </i> 0<i>.</i>052 mm 6-3. <i>h </i> 18<i>.</i>4 cm 6-4. <i> </i> 10<i>.</i>3 cm<br/><br/> <br/><br/> <b>Answers to Numerical Exercises</b><br/><br/> <b>Chapter 7</b>
7-2. <i>P </i> 7<i>.</i>8 W 7-3. <i>v </i> [<i>gV</i>(<i>ρw </i>− <i>ρ</i>)<i>/Aρw</i>]1<i>/</i>2; <i>P </i> 1<i>/</i>2[<i>W</i>{(<i>ρw/ρ</i>) −1}3<i>/</i>2]<i>/</i>(<i>Aρw</i>)1<i>/</i>2 7-5. <i>P </i> 1<i>.</i>51 × 107dyn/cm2 15 atm 7-6. Volume of swim bladder 3<i>.</i>8% 7-7. <i>ρ</i>2 <i>ρ</i>1(<i>W</i>1<i>/W</i>1 − <i>W</i>2) 7-8. <i>p </i> 1<i>.</i>46 × 105 dyn/cm2
7-11. Perimeter 9<i>.</i>42 km 7-12. Speed 29 cm/sec<br/><br/> <b>Chapter 8</b>
8-1. <i>P </i> 3<i>.</i>19 × 10−2 torr 8-2. <i>P </i> 4<i>.</i>8 torr 8-3. <i>h </i> 129 cm 8-4(a). <i>p </i> 61 torr; (b). <i>p </i> 200 torr 8-5(b). <i>R</i>1<i>/R</i>2 0<i>.</i>56 8-6. <i>v </i> 26<i>.</i>5 cm/sec 8-7. <i>N </i> 7<i>.</i>5 × 104 8-8. <i>p </i> 79 torr 8-9. <i>P </i> 10<i>.</i>1 W
8-10(a). <i>P </i> 0<i>.</i>25 W; (b). <i>P </i> 4<i>.</i>5 W<br/><br/> <b>Chapter 9</b><br/><br/>
9-2. <i>V </i> 29<i>.</i>3 <i><br/></i>9-3(a). <i>t </i> 10−2 sec; (b). <i>t </i> 10−5 sec 9-5. <i>N </i> 1<i>.</i>08 × 1020 molecules/sec 9-6. No<i>. </i>breaths/min <i>. </i> 10<i>.</i>4<br/><br/>9-7(a). Rate 1<i>.</i>71 liter/hr-cm2; (b). diameter 0<i>.</i>5 cm 9-8. <i>P </i> 2<i>.</i>87 atm<br/><br/> <b>Chapter 11</b>
11-2. <i>t </i> 373 hours 11-3. <i>v </i> 4<i>.</i>05 m3 11-4. <i>t </i> 105 days 11-5. Weight loss 0<i>.</i>892 kg 11-6. <i>H </i> 18<i>.</i>7 Cal/h
11-8(b). Change 22%; (c). <i>Kr </i> 6<i>.</i>0 Cal<i>/</i>m2-h-C◦ 11-9. Heat removed 8<i>.</i>07 Cal/h
11-10. Heat loss 660 Cal/m2-h 11-11. <i>H </i> 14<i>.</i>4 Cal/h<br/><br/> <b>Chapter 12</b>
12-1. <i>R </i> 31<i>.</i>6 km 12-2. 1.75 times 12-3. <i>p </i> 2<i>.</i>9 × 10−4 dyn/cm2 12-6. <i>D </i> 11<i>.</i>5 m 12-8. Min<i>. </i>size 1<i>.</i>7 × 10−2 cm<br/><br/> <b>Chapter 13</b>
13-1(a). No<i>. </i>of ions 1<i>.</i>88 × 1011; (b). no<i>. </i>of Na+ ions 7<i>.</i>09 × 1014<i>/</i>m;
No<i>. </i>of K+ ions 7<i>.</i>09 × 1015<i>/</i>m
13-8(a). no of cells in series 5000; (b). no of cells in parallel 2<i>.</i>7 × 109<br/><br/> <b>Chapter 14</b>
14-1. <i>i </i> 13<i>.</i>3 amp<br/><br/> <b>Chapter 15</b>
15-1. Change in position 0<i>.</i>004 cm 15-3. For cornea 41.9 diopters; for lens, min power 18.7 diopters, max
power 24<i>.</i>4 diopters
15-4. 1<i>/f </i> −0<i>.</i>39 diopters 15-5. Focusing power ±70 diopters 15-6. <i>p </i> 1<i>.</i>5 cm 15-7(a). Resolution 2<i>.</i>67 × 10−4 rad; (b). Resolution 6<i>.</i>67 × 10−4 rad 15-8. <i>D </i> 20 m 15-9. <i>H </i> 3 × 10−4 cm
<br/><br/>
Index<br/><br/>
Absorption
velocity and <i>K </i><i>c</i>, 151–152
electromagnetic radiation, 123, 242<br/><br/>
viscosity, 104<br/><br/>
spectroscopy, 245<br/><br/>
Airbag, 68–69<br/><br/>
spectrum, 243<br/><br/>
Alcohol, caloric value, 147<br/><br/>
Acceleration<br/><br/>
Aluminum
angular, 277<br/><br/>
specific heat, 119<br/><br/>
centripetal, 278–279<br/><br/>
thermal conductivity, 122<br/><br/>
defined, 273<br/><br/>
Alveoli, 129
equations of translational motion for,
size, 132<br/><br/> 30–32<br/><br/>
Amino acid, 271<br/><br/>
gravitational, 5, 33<br/><br/>
Amplification, in human ear, 175<br/><br/>
of jumper, 31–34<br/><br/>
Amplifier, 201<br/><br/>
Accommodation of eye, 216–217, 230<br/><br/>
transistor, 211<br/><br/>
Angstrom, 285<br/><br/>
Achilles tendon, 19<br/><br/>
Angular acceleration, 277<br/><br/>
Actin, 95, 96<br/><br/>
Angular momentum<br/><br/>
Action potential, 184–186
defined, 280<br/><br/>
in muscles, 194<br/><br/>
equations of, 277–278<br/><br/>
in plants, 196<br/><br/>
Angular motion
measurement, 195
forces on a curved path, 45–48
propagation, 188–190<br/><br/>
Newton’s laws, 280<br/><br/>
Adhesion, 90–91<br/><br/>
pendulum
strength of, 93<br/><br/>
physical, 51–52<br/><br/>
Adrenaline, 155<br/><br/>
simple, 48–50<br/><br/>
Aging, and vision, 216–217
running, 53–56<br/><br/>
Air
vs. linear motion, 277<br/><br/>
inspired vs. expired, 130–131
walking, 50–53<br/><br/>
motion through, 40–42<br/><br/>
Angular velocity, 276<br/><br/>
pressure in ear, 170<br/><br/>
maximum, 54, 78–79<br/><br/> 314<br/><br/> <b>Index</b><br/><br/>
Animal
propagation vs. speed of light, 186<br/><br/>
energetics, 136<br/><br/>
resistance of, 186<br/><br/>
motion, 1<br/><br/>
sodium pump, 184<br/><br/>
sounds produced by, 176<br/><br/>
voltage, 184<br/><br/>
Anvil (middle ear), 169
vs. electric cable, 186–188<br/><br/>
Aorta, 106<br/><br/>
blood pressure drop, 107–108<br/><br/>
Back
turbulent flow, 110–111
backaches, 18<br/><br/>
Aperture of eye, 218–219
lever representation, 17–19<br/><br/>
Apocrine sweat gland, 155<br/><br/>
Bacteria, thermophilic, 145<br/><br/>
Aqueous humor, 215–216<br/><br/>
Ballistocardiograph, 115<br/><br/>
Archimedes’ principle
Barth´elemy, Toussaint, 249<br/><br/>
defined, 87<br/><br/>
Basal metabolic rate, 147
fish buoyancy and, power required to stay afloat and,
Basilar membrane, 170<br/><br/> 87–88<br/><br/>
Bats
Arteriole, 106–107, 109<br/><br/>
chirping, 175–176<br/><br/>
Arterisclerosis, and blood flow, 111–112
echo location, 175<br/><br/>
Artery, 105<br/><br/>
Battery, 292<br/><br/>
elasticity, 112<br/><br/>
Bernoulli’s equation, 101–102, 103<br/><br/>
narrowing, 111, 112<br/><br/>
stenosis and, 111<br/><br/>
natural frequency, 112<br/><br/>
Biceps, 7<br/><br/>
plaque deposit, 111–112<br/><br/>
movement of, 11–15<br/><br/>
pressure drop, 107–108<br/><br/>
Biological control system, 208<br/><br/>
pulmonary, 105<br/><br/>
features, 206–207<br/><br/>
Astigmatism, 227<br/><br/>
feedback, 208–210<br/><br/>
lens for, 228, 229<br/><br/>
in iris, 210<br/><br/>
Atom<br/><br/>
Biomechanics, 2<br/><br/>
absorption spectrum, 243<br/><br/>
Blood
energy state, 241–242<br/><br/>
adrenaline in, 155<br/><br/>
excitation of, 242–243<br/><br/>
cells, radioactive, 269<br/><br/>
interactions between, 270<br/><br/>
circulation, 105–107<br/><br/>
nucleus, 240, 256–257<br/><br/>
flow<br/><br/>
structure, 239–240<br/><br/>
arterisclerosis, 111–112<br/><br/>
Atomic physics, 239<br/><br/>
control, 109<br/><br/>
Axon, 181<br/><br/>
energetics, 110<br/><br/>
action potential, 184–186
laminar, 103, 104, 110, 111<br/><br/>
action potential propagation,
rate, 112–113<br/><br/> 188–190
to brain, 109
capacitance and resistance of, 186<br/><br/>
turbulence, 110–111
circuit, analysis of, diameter of, 183<br/><br/>
velocity, 110, 178<br/><br/>
electrical potentials, 183–184, 185<br/><br/>
kinetic energy, 110<br/><br/>
electrical properties, 186–187<br/><br/>
pressure
length of, 181<br/><br/>
arterial, 107–109<br/><br/>
membrane
at capillaries, 107<br/><br/>
as leaky insulator, 186<br/><br/>
measurement, 113–114<br/><br/>
permeability, 184<br/><br/>
systolic and diastolic, 107<br/><br/>
myelin, 181<br/><br/>
venal, 109<br/><br/>
myelinated, 192–193<br/><br/>
sugar level, 245<br/><br/>
myelinated vs. nonmyelinated, 187<br/><br/>
venal, 136<br/><br/>
nodes of Ranvier, 181<br/><br/>
viscosity, 104 <br/><br/> <b>Index</b><br/><br/>
Bohr model of atom, 240–241, 247<br/><br/>
Center of mass motion
formation of chemical bonds,
in running, 57–58<br/><br/> 243–244<br/><br/>
in walking, 56–57<br/><br/>
hydrogen, 241<br/><br/>
Centrifugal force, 45–46, 47<br/><br/>
Bohr, Niels, 240<br/><br/>
defined, 278<br/><br/>
Boltzmann constant, 117–118<br/><br/>
Centripetal acceleration, 277–278<br/><br/>
Bone<br/><br/>
Centripetal force, 46, 47, 277–278<br/><br/>
density
defined, 277<br/><br/>
cuttlefish, 88–89 137Cesium, 268<br/><br/>
electricity and, 196–197<br/><br/>
Chatecholamine, 109<br/><br/>
fracture<br/><br/>
Chemical bond, formation of, 243–244
energy involved, 64–66<br/><br/>
Chemical energy, 139
force needed to cause, 67–68<br/><br/>
Chemical fumigation, 267<br/><br/>
neck, 69–70<br/><br/>
Chlorine ion, and membrane potential, 184<br/><br/>
NMR signal, 261<br/><br/>
Chromium isotope, in medicine, 269<br/><br/>
osteoblasts and osteoclasts, 197<br/><br/>
Circulatory system, 105–107<br/><br/>
Boyle’s law, 119
body heat transfer and, 151<br/><br/>
Brain
mechanism of energy losses, 107<br/><br/>
activity identification, 265–266
turbulent flow, 111–112<br/><br/> 60<br/><br/>
arteries, 109<br/><br/>
Cobalt, 268<br/><br/>
blood flow to, 109<br/><br/>
Cochlea, 170–171
diagnosing disorders, 204<br/><br/>
implants, 211–213<br/><br/>
ischemic stroke, 112<br/><br/>
Coefficient<br/><br/>
nerve centers in, 150<br/><br/>
convection, 122, 152<br/><br/>
nerve impulses, 162<br/><br/>
diffusion, friction, 24, 25, 46, 71<br/><br/>
role in hearing, 175<br/><br/>
kinetic, 25, 71<br/><br/>
signal processing, 226<br/><br/>
static, 25<br/><br/>
Breathing
thermal conductivity, 121<br/><br/>
cold-blooded animals, 132<br/><br/>
Collision
heat loss by, 155–156, 157<br/><br/>
automobile, 69–70<br/><br/>
surfactants and, 132<br/><br/>
duration of, 66–67<br/><br/>
Broad jump
force of, 67–68<br/><br/>
running position, 39–40
protective device, 68–69
standing position, 37–39<br/><br/>
Compression, 61–62
Broca, Paul Pierre, 265<br/><br/>
Computerized tomography, 250–251, 257<br/><br/>
Broken heart syndrome, 109<br/><br/>
Conductance (G), 291<br/><br/>
Bruit, 111<br/><br/>
Conduction, thermal, 120–121<br/><br/>
Buoyancy, of fish, 88–89
in human body, 150, 151<br/><br/>
Conductor, 291<br/><br/>
Calorie, 119<br/><br/>
Cones and rods, 222, 223, 224, 225–226<br/><br/>
intake, 148<br/><br/>
Confocal microscopy, 232–235<br/><br/>
Capacitor, 291<br/><br/>
Conservation<br/><br/>
Capillary action, 91, 92, 93<br/><br/>
energy, 135–136<br/><br/>
Cardiomyopathy, stress, 109<br/><br/>
Bernoulli’s equation and, 101–102<br/><br/>
Cardiovascular disease
human physiology and, 136<br/><br/>
arterisclerosis, 111–112<br/><br/>
linear momentum, 275<br/><br/>
stress cardiomyopathy, 109<br/><br/>
Constructive interference, 166<br/><br/>
Catfish spine fin, 27–29<br/><br/>
Control system, 206–208<br/><br/>
Cell, 270–271
feedback, 208–210<br/><br/>
Center of gravity, 2<br/><br/>
Convection, 121–122
human body, 3–4<br/><br/>
in human body, 151–153<br/><br/> <b>Index</b><br/><br/>
Converging lens, 294, 295–298<br/><br/>
molecular transport through,<br/><br/>
Cooling mechanism, 136, 141, 150, 126–127<br/><br/> 155–156, 158
random walk, 124–125<br/><br/>
Cork, thermal conductivity of, 122<br/><br/>
through biological membrane,<br/><br/>
Cornea, 215<br/><br/> 128–129<br/><br/>
receive oxygen by diffusion, 133<br/><br/>
Diopter, 219<br/><br/>
refractive power, 220<br/><br/>
Dipole field, 289<br/><br/>
Coulomb, 287<br/><br/>
Diverging lens, 294, 300<br/><br/>
Coulomb’s law, 287–288
DNA, 143–144, 248, 250, 269, 270, 271<br/><br/>
Critical angle, 294<br/><br/>
Doppler effect, 178<br/><br/>
Critical flow velocity, 104<br/><br/>
Doughnut, energy content, 43<br/><br/>
Cromer, A. H., 43<br/><br/>
Dyne, 285<br/><br/>
Crystallography, CT scan, 250–251, Cut-off blood pressure measurement,<br/><br/>
Ear, 168<br/><br/> 113–114<br/><br/>
amplification in, 175<br/><br/>
Cuttlefish, bone density, 88–89
canal, horns, 211<br/><br/>
Davidovits, Paul, 232, 233<br/><br/>
inner, 170–171
da Vinci, Leonardo, 1, 7–8<br/><br/>
balance maintenance, 21<br/><br/>
De Broglie, Louis, 246, 247<br/><br/>
middle, 169–170<br/><br/>
Defibrillator, 206<br/><br/>
outer, 168–169<br/><br/>
Dehydration, 155<br/><br/>
performance, 171–172<br/><br/>
Density<br/><br/>
sound detection capability, 172–173<br/><br/>
constant, 83<br/><br/>
sound intensity, 173–175
of water, and floating, 87–88
threshold of hearing and pain, 173, 174
porous bones and swim bladders,
Eardrum, 162, 168, 169–170, 175<br/><br/> 88–89<br/><br/>
Earth, forces on, 33<br/><br/>
Depth of field, 219<br/><br/>
Eccrine sweat gland, 155<br/><br/>
Destructive interference, 166<br/><br/>
ECG, <i>See </i>Electrocardiography<br/><br/>
Diabetic retinopathy, laser treatment, 254<br/><br/>
Echoes, bats and, 175<br/><br/>
Diagnostic equipment
EEG, <i>See </i>Electroencephalography
computerized tomography, 250–251,<br/><br/>
Eel, electric, 198<br/><br/> 257<br/><br/>
Egger, M. David, 232, 233<br/><br/>
electrocardiograph, 195, 202–203<br/><br/>
Einstein, Albert, 252<br/><br/>
electroencephalograph, 195,<br/><br/>
Elasticity, 61<br/><br/> 203–204<br/><br/>
artery, 112
electromyograph (EMG), 195
insect wings, 79–80
magnetic resonance imaging,
spring, 62–64<br/><br/> 257–258<br/><br/>
Elbow, movement of, 11–15<br/><br/>
stethoscope, 111, 113, 177, X-rays, 249–250<br/><br/>
Electrical technology, in biological
research, 200–202<br/><br/>
Diastolic pressure, Diathermy, 178<br/><br/>
Electric charge, 287–288<br/><br/>
Diffraction, 168<br/><br/>
Electric circuit, 290–292<br/><br/>
in eye, 224<br/><br/>
Electric current, 289<br/><br/>
studies with molecules, 250<br/><br/>
effect on brain, 205<br/><br/>
Diffusion, 123–125
sources, 292<br/><br/>
coefficient, 127<br/><br/>
Electric eel, 198<br/><br/>
contact lens and, 133<br/><br/>
Electric field, 288–289, 292<br/><br/>
in respiratory system, 129–132<br/><br/>
in water, 198<br/><br/>
mean free path, 124<br/><br/>
Electric fish, 197–198<br/><br/> <br/><br/> <b>Index</b><br/><br/>
Electricity
consumption in physical activity,
as a natural phenomena, 180<br/><br/> 42–43<br/><br/>
in bone, 196–197<br/><br/>
load carrying, 58–59
fish and, 197–198
running, 54–56<br/><br/>
in plants, 196<br/><br/>
electromagnetic, 122–123<br/><br/>
magnetism and, 292<br/><br/>
forms, 283<br/><br/>
nervous system and, 180–196<br/><br/>
from food, 147–149<br/><br/>
physiological effects, 204–206<br/><br/>
internal, 117, 139<br/><br/>
piezoelectricity, 196–197
involved in bone fracture, 64–66<br/><br/>
Electric shock, 204–205
kinetic, 283<br/><br/>
Electrocardiography (ECG), 195, 202–203<br/><br/>
insect wing in flight, 78–79<br/><br/>
Electrode, 202
of particles in gas, 117<br/><br/>
Electroencephalography (EEG), 195,
level, 241–242<br/><br/> 203–204<br/><br/>
mechanical, in ultrasonic wave, 178<br/><br/>
Electromagnetic radiation, 214<br/><br/>
requirements, 146–149
energy and, 122–123<br/><br/>
during pregnancy, 149
excitation of atom and, 242–243<br/><br/>
unit and conversion, 286<br/><br/>
Electromyography (EMG), 195<br/><br/>
Entropy, 142<br/><br/>
Electron, 239, 240–241<br/><br/>
Epilepsy, 205<br/><br/>
binding energy, 243<br/><br/>
Equilibrium
diffraction patterns, 247<br/><br/>
human body considerations, 3–4<br/><br/>
electric charge of, 287<br/><br/>
stability and, 2–3
energy level, 241–242
static, 2–3, 282<br/><br/>
excitation, methods of, 242<br/><br/>
Eustachian tube, 170<br/><br/>
excited state, 242<br/><br/>
Evaporation, skin temperature control by,
ground state, 241–242<br/><br/> 155–156<br/><br/>
high-speed (Beta particles), 256<br/><br/>
Excited state, 242<br/><br/>
and food preservation, 268<br/><br/>
Exercise, osteoarthritis and, 71<br/><br/>
impact, 242<br/><br/>
Eye
inner, 243<br/><br/>
aging and, 216–217<br/><br/>
in oscilloscope, 201
aperture and depth of field, 218–219
orbital restrictions, 240–241
eyeglasses, 211<br/><br/>
orbit around nucleus, 240<br/><br/>
focusing, 216–217, 230<br/><br/>
outer, 243<br/><br/>
laser treatment, 253–255
radiation and, 122–123
lens system, 219–220
shared, 244
light intensity reaching retina,
wavelength, 247<br/><br/> 207–208, 209<br/><br/>
wavelike properties, 246<br/><br/>
near point, 216–217<br/><br/>
Electron microscope, 247–248
parameters, 220<br/><br/>
EMG, <i>See </i>Electromyography
reduced, 220–222<br/><br/>
Emission
resolution of, 223–225<br/><br/>
spectroscopy, 245<br/><br/>
structure, 215–216<br/><br/>
spontaneous, 252<br/><br/>
vs. camera, 217–218
stimulated, 252<br/><br/>
Eyepiece, 230, 231<br/><br/>
Emissivity, 123<br/><br/>
of skin, 153<br/><br/>
Falling<br/><br/>
Endoscope, 236–237
fracture due to, 67–68<br/><br/>
Energy, 282–283
from great height, 70<br/><br/>
chemical, 139<br/><br/>
on snow, 70<br/><br/>
in food, 141<br/><br/>
Farads, 291<br/><br/>
conservation, 135–136<br/><br/>
Fasting, world record, 149
<b>Index</b><br/><br/>
Feedback system, 208–209
fluid, 82–86<br/><br/>
negative feedback, 209<br/><br/>
impulsive, 66–67<br/><br/>
positive feedback, 209<br/><br/>
bone fracture and, 67–68<br/><br/>
Fetus<br/><br/>
lines of, 288–289<br/><br/>
energy required, 149
on a curved path, 45–48
heart, examination, 178<br/><br/>
on the foot, 47<br/><br/>
Fiber optics, 235
pressure in a fluid and, 82–83
fiberscopes, 236–237
static, 1–2<br/><br/>
Fibrillation, 205–206<br/><br/>
stopping, 69<br/><br/>
Field line, 288<br/><br/>
unit and conversion, 285<br/><br/>
Fish
Fourier, J. B. J., 171<br/><br/>
buoyancy, 88–89<br/><br/>
Fovea, 222<br/><br/>
catfish spine fin, 27–29<br/><br/>
Fracture
electric, 197–198
due to a fall, 67–68
electronic lures, 176<br/><br/>
energy involved, 64–66
eye, lens focusing power, 219–220
neck bone, 69–70<br/><br/>
Flight<br/><br/>
Frequency
insect, 73–80<br/><br/>
larmor, 259–261<br/><br/>
hovering, 73–75
natural, of healthy artery, 112<br/><br/>
Fluid
pendulum swings, 48–49<br/><br/>
Archimedes’ principle, 87–89<br/><br/>
resonant, 167<br/><br/>
blood, <i>See </i>Blood
sound, 163, 164<br/><br/>
body, 183<br/><br/>
Friction, 23–24
defined, 82<br/><br/>
at hip joint, 26–27
force and pressure, 82–86
catfish spine fin and, 27–29
friction and, 103–104
coefficient, 24, 25, 46, 71<br/><br/>
motion of, 101<br/><br/>
fluid, in air, 40<br/><br/>
Bernoulli’s equation, 101–102
standing at an incline, 25–26
laminar, 103, 104<br/><br/>
viscous, 24, 103, 107<br/><br/>
Poiseuille’s law, 103–104, 107–108<br/><br/>
Frog
turbulent flow, 104–105<br/><br/>
alveolal radii, 132<br/><br/>
viscous friction, 24, 103, 107<br/><br/>
diffusion transfer of oxygen,
surface tension, 89–96<br/><br/> 131–132<br/><br/>
Flux, 126–127, 128<br/><br/>
neurons in retina, 226–227<br/><br/>
solar, 154<br/><br/>
Fulcrum, 9–10<br/><br/>
Focal length of lens, 295–297<br/><br/>
Fumigation, chemical, 267<br/><br/>
Focus, principal, of the lens, 295<br/><br/>
Functional magnetic resonance imaging<br/><br/>
Food
(fMRI), 265–266
composition and energy content, 148<br/><br/>
Fur, 157<br/><br/>
energy from, 141, oxidation, 147<br/><br/>
Galvani, Luigi, 194<br/><br/>
preservation by fumigation, 267<br/><br/>
Gamma ray, use in food preservation,
preservation by radiation, 267–268<br/><br/> 267–268<br/><br/>
requirements for humans, 147–148<br/><br/>
Gas<br/><br/>
Force
behavior, 139
addition of torques and, 281–282
behavior of matter as a function of
adhesive vs. cohesive, 90<br/><br/>
temperature in, 117–119<br/><br/>
centrifugal, 45–46, 47, 278<br/><br/>
diffusion, 125<br/><br/>
centripetal, 46, 47, 277–278<br/><br/>
greenhouse, 159<br/><br/>
contraction of muscle, 96<br/><br/>
noble, 244<br/><br/>
defined, 274<br/><br/>
pressure, 118<br/><br/>
field, 288<br/><br/>
Generator, 292<br/><br/> <br/><br/> <b>Index</b><br/><br/>
Geometric optics, 293–295<br/><br/>
unit of, 119, 284<br/><br/>
Gland
vs. other energy forms, 138–140<br/><br/>
apocrine, 155<br/><br/>
Helicotrema, 170<br/><br/>
eccrine, 155<br/><br/>
Henry, 292<br/><br/>
Glass<br/><br/>
Hertz, 163<br/><br/>
lens, 294<br/><br/>
Hertz, Heinrich, 163<br/><br/>
radiation and, 123, 249<br/><br/>
High jump, 36–37<br/><br/>
silica, 235<br/><br/>
Hip joint<br/><br/>
Glycerine, viscosity of, 104<br/><br/>
friction at, 26–27<br/><br/>
Gravitational force, 274<br/><br/>
movement of, walking on injured, 17<br/><br/>
Greenhouse effect, 159<br/><br/>
Hooke, Robert, 62, 63<br/><br/>
Greenhouse gas, 159<br/><br/>
Hooke’s law, 62, 79<br/><br/>
Ground state, 241–242<br/><br/>
Hormone, 109, 207<br/><br/>
Gyromagnetic ratio, 258, 259<br/><br/>
Hovering flight, 73–75
power required, 76–79<br/><br/>
Hales, Stephen, 113<br/><br/>
Human body, <i>See also Specific parts,</i>
Hammer (middle ear), 169 <i>organs and systems</i>
Hearing, 168
adaptation for heat vs. cold, 156<br/><br/>
aids, 211<br/><br/>
critical temperature, 156<br/><br/>
ear horns, 211<br/><br/>
energy requirements, 146–148
brain’s role in, 175<br/><br/>
food requirements, 147–148
cochlear implants, 211–213<br/><br/>
metabolic rate, 146<br/><br/>
in bats, 175–176
motion, 1–2
sound frequency and pitch, 172–173
oxygen requirements, 130–131<br/><br/>
threshold of, 173, 174<br/><br/>
posture, 19–21<br/><br/>
transistorized aids for, 211<br/><br/>
radiative heating, 154<br/><br/>
Heart<br/><br/>
resistance to cold, 156–157<br/><br/>
aorta, 106<br/><br/>
senses, limitations of, 200<br/><br/>
atrium and ventricle, 105–106<br/><br/>
sound production, 176<br/><br/>
capillaries, 107
specific heat, stability of, 3–4
desynchronization of heart action,
under action of external force, 4–7<br/><br/> 205–206<br/><br/>
sweat production, 155–156, 209<br/><br/>
fetus, examination, 178<br/><br/>
temperature<br/><br/>
power produced by, 112–113<br/><br/>
regulation, 149–151<br/><br/>
stress, 109<br/><br/>
regulation by convection, 151–153<br/><br/>
Heat, 284, <i>See also </i>Thermodynamics
regulation by evaporation, 155–156<br/><br/>
cold and, 156–157<br/><br/>
regulation by radiation, 153<br/><br/>
defined, 116<br/><br/>
Hydrogen
latent, 120<br/><br/>
Bohr model for atom of, 241<br/><br/>
life and, 145–146
formation of molecule of, 244<br/><br/>
loss by breathing, 155–156, 157<br/><br/>
nuclear magnetic properties of, 258<br/><br/>
radiative by sun, 153–154<br/><br/>
Hydrostatic skeleton, 84–86<br/><br/>
specific, 119, 284<br/><br/>
Hyperopia, 227<br/><br/>
therapeutic effects, 161<br/><br/>
lens for, 228, 229
transfer of
conduction, 120–121, 150, 151<br/><br/>
Ice, specific heat of, 119<br/><br/>
convection, 121–122, 151–153<br/><br/>
Image
diffusion, 123–133
of extended objects, 298–300<br/><br/>
in human body, 149–157<br/><br/>
on retina, 217–218<br/><br/>
radiation, 122–123, 139, 153–154<br/><br/>
size, 221–222, 223, 229–230<br/><br/> <b>Index</b>
real, 297<br/><br/>
Irradiation, food, 267–268
size of aperture and, 218–219<br/><br/>
Ischemic stroke, 112<br/><br/>
virtual, 297<br/><br/>
Isotope, 256<br/><br/>
Imaging
oxygen, 256<br/><br/>
computerized tomography, 250–251, 257<br/><br/>
radioactive, 257
magnetic resonance imaging (MRI),
tracers, 268–269<br/><br/> 257–258<br/><br/>
ultrasound, 177–178<br/><br/>
Joint
with NMR, 262–265<br/><br/>
hip<br/><br/>
X-ray, 243, 249–250<br/><br/>
friction at, 26–27<br/><br/>
Impulsive force, 66–67
movement, 15–17
fracture and, 67–68<br/><br/>
walking on injured, 17<br/><br/>
Inductor, 292<br/><br/>
knee problems, 71<br/><br/>
Inertia, moment of, 279<br/><br/>
osteoarthritis, 70–71<br/><br/>
Infant respiratory distress syndrome, 132<br/><br/>
Jump<br/><br/>
Inner ear, 170–171
broad
balance maintenance, 21<br/><br/>
from running position, 39–40<br/><br/>
basilar membrane, 170<br/><br/>
from standing position, 37–39
cochlea, 170–171<br/><br/>
high, 36–37
implants, 211–213
vertical
helicotrema, 170<br/><br/>
effect of gravity on, 35<br/><br/>
Insect
height of, 32–35<br/><br/>
flight, 73<br/><br/>
hovering, 73–75, 76–79<br/><br/>
Kilocalorie, 284<br/><br/>
locomotion on water, 93–95, 99<br/><br/>
Kinesiology, 2<br/><br/> <i>Microvelia</i>, 99<br/><br/>
Kinetic energy
wing
defined, 283<br/><br/>
elasticity, 79–80
insect wing in flight, 78–79
kinetic energy when in flight,
of particles in gas, 117<br/><br/> 78–79<br/><br/>
Kinetic friction, 23–24
muscles, 75–76<br/><br/>
coefficient, 25, 71<br/><br/>
Insulation, fur and feather, 122, 157<br/><br/>
Kinetic theory of matter, 116–119<br/><br/>
Insulator, 291<br/><br/>
Knee joint, problems, 71<br/><br/>
Intensity
Kuhne, W., 217, 218
of light
control, in reaching retina,
Laminar flow, 103, 104, 110, 111<br/><br/> 207–208, 209<br/><br/>
Larmor frequency, 259–261<br/><br/>
of sound, 163<br/><br/>
Laser, 252–253
and loudness, 173–175<br/><br/>
surgery, 253<br/><br/>
Interference, 166–167
ophthalmological applications,<br/><br/>
Internal energy, 117, 139 253–255<br/><br/>
Internal reflection, total, 294, 295<br/><br/>
LASIK (Laser-assisted in Situ Ker
Interneuron, 181
atomileusis), 254–255 131Iodine, 267<br/><br/>
Latent heat, 120<br/><br/>
Ion
Lauterbur, P. C., 263
membrane potential and, 183–184
Lavoisier, Laurent, 135, 136<br/><br/>
negative, 287<br/><br/>
Lens, 215<br/><br/>
positive, 287<br/><br/>
astigmatism, 228, 229<br/><br/>
Iris, 215
contact lens and diffusion, 133<br/><br/>
control system, 210<br/><br/>
converging, 294, 295–298<br/><br/>
defined, 207<br/><br/>
diverging, 294, 300<br/><br/>
optical aperture, 218–219<br/><br/>
eyepiece, 230, 231<br/><br/> <br/><br/> <b>Index</b>
Lens (<i>cont</i>.)<br/><br/>
Mayer, Robert, 135–136
immersed in a material medium,
Mean free path, 124<br/><br/> 300–301<br/><br/>
Medfly (Mediterranean fly), control of,
myopia, 228, 229<br/><br/> 177<br/><br/>
objective, 230, 231<br/><br/>
Membrane
of eye, 219–220<br/><br/>
axon
focusing power, 216–217<br/><br/>
as leaky insulator, 186<br/><br/>
presbyopia and hyperopia, 228, 229<br/><br/>
capacitance and resistance, 186<br/><br/>
Lever, 9–11<br/><br/>
permeability, 184<br/><br/>
arm, 279<br/><br/>
basilar, 170<br/><br/>
elbow movement, 11–15
biological, diffusion through,
hip movement, 15–17<br/><br/> 128–129<br/><br/>
spine movement, 17–19
oval window in ear, 169
standing on tip-toe on one foot,
tympanic, 162, 168, 169–170, 175 19, 20<br/><br/>
Membrane protein, solubility, 98<br/><br/>
Light, 162, 214<br/><br/>
Mercury, viscosity of, 104<br/><br/>
emitted by laser, 252<br/><br/>
Metabolic rate, 145–146
fiber-optic devices and, 237<br/><br/>
defined, 146<br/><br/>
intensity at retina, 207–208, 209<br/><br/>
for selected activities, 146<br/><br/>
penetration through tissue, 232<br/><br/>
Metabolism, 157<br/><br/>
properties, 215<br/><br/>
Mho, 291<br/><br/>
speed, 293<br/><br/>
Micron, 285<br/><br/>
vision and, 214–215<br/><br/>
Microscope, 231<br/><br/>
Limping, 17, 18<br/><br/>
compound, 231<br/><br/>
Linear momentum, 274<br/><br/>
confocal, 232–235<br/><br/>
conservation, 275<br/><br/>
electron, 247–248<br/><br/>
Linear motion, 277<br/><br/>
resolution, 231–232<br/><br/>
Lines of force, 288<br/><br/> <i>Microvelia</i>, 99<br/><br/>
Lipoprotein, solubility, 98<br/><br/>
Middle ear, 169–170<br/><br/>
Lithium, 241<br/><br/>
Eustachian tube, 170<br/><br/>
Load carrying, energy consumption, 58–59
hammer, anvil, stirrup, 169<br/><br/>
Logarithmic sound intensity, 174<br/><br/>
ossicles, 169, 170, 175<br/><br/>
Long jump, <i>See </i>Broad jump
Miller, S. L., 271<br/><br/>
Loudness, 173–175<br/><br/>
Minsky, Marvin, 233<br/><br/>
Lubrication, 25<br/><br/>
Moisture tension in soil, 92–93
effect on human hip joint, 27<br/><br/>
Molecule<br/><br/>
Lumbar vertebra, fifth, 17–19<br/><br/>
characteristic spectra, 244<br/><br/>
Lung<br/><br/>
diffraction studies with, 250<br/><br/>
gas exchange in, 129–130<br/><br/>
formation of hydrogen, 244<br/><br/>
water vapor and, 155<br/><br/>
organic, 270–271<br/><br/>
X-ray, 250<br/><br/>
transport through diffusion, 126–127<br/><br/>
Moment arm, 279<br/><br/>
Magnetic moment, 258, 259<br/><br/>
Moment of inertia, 279<br/><br/>
Magnetic resonance imaging (MRI), 257–<br/><br/>
Momentum<br/><br/> 258, 262–265<br/><br/>
angular, 280<br/><br/>
functional, 265–266
equations of, 277–278<br/><br/>
Magnetism, electricity and, 292<br/><br/>
linear, 274<br/><br/>
Marangoni propulsion, 99<br/><br/>
conservation, 275<br/><br/>
Mass, 274<br/><br/>
Motion, 1–2<br/><br/>
unit and conversion, 285<br/><br/>
angular<br/><br/>
Matter, kinetic theory of, 116–119<br/><br/>
Newton’s laws, 280<br/><br/>
Maximum angular velocity, 54, 78–79<br/><br/>
vs. linear, 277<br/><br/> <b>Index</b>
Newton’s laws, 274–275<br/><br/>
Newton’s
rotational, 30, 31<br/><br/>
laws of angular motion, 280<br/><br/>
equations for, 278
laws of motion
thermal, 117, 124, 140<br/><br/>
first, 274<br/><br/>
through air, 40–42
second, 275<br/><br/>
translational, 30–32<br/><br/>
third, 275<br/><br/>
Motor neuron, 181<br/><br/> 14Nitrogen, 269<br/><br/>
MRI, <i>See </i>Magnetic resonance imaging
NMR, <i>See </i>Nuclear magnetic resonance<br/><br/>
Muscle<br/><br/>
Noble gas, 244<br/><br/>
action potentials in, 194<br/><br/>
Nodes of Ranvier, 181<br/><br/>
biceps, 7, 11–15<br/><br/>
Noise
contraction, 8, 95–96<br/><br/>
bruit, 111<br/><br/>
efficiency, 42–43<br/><br/>
laminar flow, 113<br/><br/>
fibers, 194<br/><br/>
Nuclear magnetic resonance (NMR), 257–
insect wings, 75–76<br/><br/> 262<br/><br/>
myofibrils, 95<br/><br/>
imaging with, 262–265<br/><br/>
skeletal, 7–9, 95–96<br/><br/>
Nuclear spin, Nucleus, 240, 256–257<br/><br/>
spindle, 194<br/><br/>
transmutation, 257<br/><br/>
stimulation by electric current, triceps, 7, 11, 12<br/><br/>
Musculoskeletal system,<br/><br/>
Objective lens, 230, 231<br/><br/>
interconnectedness, 21<br/><br/>
Ohm, 290<br/><br/>
Myelin, 181<br/><br/>
Ohm’s law, 205, 291<br/><br/>
Myelinated axon, 192–193<br/><br/>
Optical spectra, 243<br/><br/>
vs. nonmyelinated, 187<br/><br/>
Optics, 214<br/><br/>
fiber, 235–237<br/><br/>
Myofibrils, 95<br/><br/>
geometric, 293–295<br/><br/>
Myopia, 227<br/><br/>
vision and, 214–215<br/><br/>
lens for, 228, 229<br/><br/>
Oscilloscope, 201–202<br/><br/>
Myosin, 95, 96<br/><br/>
Osmosis, Ossicles, 169, 170, 175<br/><br/>
Near point of the eye, 216–217<br/><br/>
Osteoarthritis, 70–71<br/><br/>
Neck bone, fracture, 69–70<br/><br/>
exercise and, 71<br/><br/>
Negative feedback, 209–210<br/><br/>
Osteoblast, 197<br/><br/>
Negative ion, 287<br/><br/>
Osteoclast, 197<br/><br/>
Nervous system
Oudin, Paul, 249<br/><br/>
action potential, 184–186<br/><br/>
Outer ear, 168–169
action potential, propagation, 188–190<br/><br/>
ear canal, 169<br/><br/>
electrical phenomena and, 180–181<br/><br/>
pinna, 168<br/><br/>
electrical potentials in axon, 183–184,
tympanic membrane, 162, 168, 169–<br/><br/> 185<br/><br/> 170, 175<br/><br/>
signal propagation, 181<br/><br/>
Oxidation of food, 147<br/><br/>
surface potentials, 194–196<br/><br/>
Oxygen
synaptic transmission, 193–194
consumption, calories produced by, 147<br/><br/>
vision and, 226–227<br/><br/>
diffusion through skin, 129<br/><br/>
Neuron, 180, 181–183<br/><br/>
small animals, 131–132
axons and dendrites, 181, 183, <i>See also</i>
isotopes of, 256<br/><br/>
Axon
oxidation of food, 147<br/><br/>
classes, 181<br/><br/>
requirement for humans, 130–131
Neutron, Newton, 5<br/><br/>
Pacemaker, 202<br/><br/>
Newton, Isaac, 1<br/><br/>
electronic, 206 <br/><br/> <b>Index</b><br/><br/>
Particle, wavelike properties, 246–247
measurement, 113–114<br/><br/>
Pascal (Pa), 83
systolic and diastolic, 107<br/><br/>
Pascal’s principle, 83–84
venal, 109<br/><br/>
Pastuerization, 267<br/><br/>
defined, 274<br/><br/>
Pendulum
fluid, 82–84
physical, 51–52, 54–56<br/><br/>
gas, 118<br/><br/>
simple, 48–50<br/><br/>
in porous bones, 89<br/><br/>
Period, of pendulum motion, 48–49<br/><br/>
inside worm, 85<br/><br/>
Phosphorus, radioactive, 257, 267, 269<br/><br/>
on eardrum, 170<br/><br/>
Photodetector, 245<br/><br/>
Poiseuille’s equation and, 103–104<br/><br/>
Photon, 215<br/><br/>
sound, 164–165, 175<br/><br/>
Photoreceptor, 222, 225–226<br/><br/>
unit and conversion, 285<br/><br/>
Photosynthesis, 214<br/><br/> <i>Principia Mathematica</i>, 1<br/><br/>
Physics and life, 269–271<br/><br/>
Projectile, range of, 37<br/><br/>
Piezoelectric effect, 196–197<br/><br/>
Protein<br/><br/>
Pinna, 168<br/><br/>
caloric value, 147<br/><br/>
Pitch of sound, 172–173<br/><br/>
consumption during fasting, 149<br/><br/>
Planck’s constant, 215, 246–247, 258<br/><br/>
resilin, 79–80<br/><br/>
Plant
solubility of membrane protein and
action potential in, 196<br/><br/>
lipoprotein, 98<br/><br/>
electricity in, 196<br/><br/>
specific heat, 119<br/><br/>
soil water and, 92–93<br/><br/>
Proton, 239–240, 287<br/><br/>
Plaque, arterial, 111–112<br/><br/>
Pulmonary artery, 105<br/><br/>
Poise, 103, 104<br/><br/>
Pupil, 215<br/><br/>
Poiseuille, L. M., 101<br/><br/>
defined, 207<br/><br/>
Poiseuille’s law, 103–104<br/><br/>
Pure tone, 163–164
estimation of blood pressure drop and, <i>P </i>wave, 203<br/><br/> 107–108<br/><br/>
Positive feedback, 209–210<br/><br/>
Quality<br/><br/>
Positive ion, 287<br/><br/>
image, 218<br/><br/>
Posture, 19–21<br/><br/>
sound, 171<br/><br/>
Potassium ion, axon potential and, 184<br/><br/>
Quantum mechanics, 246–247, 270<br/><br/>
Potential
axon, 184<br/><br/>
Radian, 276<br/><br/>
difference, 289<br/><br/>
Radiation, 139<br/><br/>
energy, 283–284
electromagnetic, 122–123, 214<br/><br/>
Power, 284<br/><br/>
food preservation by, 267–268
defined, 78<br/><br/>
human body, 153<br/><br/>
generated by limbs, 88<br/><br/>
solar, 153–154
produced by, 112–113<br/><br/>
and soil, 159<br/><br/>
required to hover, 76–79
therapy, 266–267
required to stay afloat, 87–88
thermal, 122<br/><br/>
unit and conversion, 286<br/><br/>
Radioactive
Precession, 260<br/><br/>
isotopes, 257<br/><br/>
Pregnancy, energy requirements, 149<br/><br/>
tracers, 269<br/><br/>
Presbyopia, 217<br/><br/>
Radioactivity, 256–257
lens for, 229<br/><br/>
Random thermal motion, 124, 140<br/><br/>
Pressure<br/><br/>
Random walk, 124–125<br/><br/>
Bernoulli’s equation and, 101<br/><br/>
Real image, 297<br/><br/>
blood<br/><br/>
Reduced eye, 220–222
arterial, 107–109<br/><br/>
Reflection, 165–166<br/><br/>
at capillaries, 107<br/><br/>
total internal, 294, 295<br/><br/> <b>Index</b><br/><br/>
Refraction, 165–166<br/><br/>
Siemen, 291<br/><br/>
defined, 293<br/><br/>
Silver, thermal conductivity of, 122<br/><br/>
index of, 220<br/><br/>
Simple harmonic motion, 48
refractive power of cornea, 219–220
walking in terms of, 50–51<br/><br/>
Resilin, 79–80<br/><br/>
Sinusoidal sound wave, 163–164, 171, 172<br/><br/>
Resistance of air, 40–42<br/><br/>
Skeletal muscle, 7–9<br/><br/>
Resistivity, 290<br/><br/>
contraction, 95–96<br/><br/>
Resistor, 290–291<br/><br/>
Skin<br/><br/>
Resolution
convection and, 151–153
eye, 223–225<br/><br/>
emissivity of, 153<br/><br/>
microscope, 231–232
evaporative cooling, 156–157<br/><br/>
Resonant frequency, 167<br/><br/>
frostbite, 157<br/><br/>
Respiratory system
oxygen diffusion through, 129<br/><br/>
diffusion process, 129–132<br/><br/>
radiative heating of, 153–154<br/><br/>
surfactants and breathing, 132<br/><br/>
temperature, 150–151<br/><br/>
Retina, 215, 222–223<br/><br/>
control, 151<br/><br/>
cones and rods, 222, 223, 224,
Snell’s law, 235<br/><br/> 225–226<br/><br/>
defined, 293–294
degeneration arrest, 253–254<br/><br/>
Sodium
image size on, 221–222, 223,
ions, 184, 189 229–230<br/><br/>
pump, 184<br/><br/>
light intensity, control of, 207–208, 209<br/><br/>
Soil<br/><br/>
photographic film and, 217–218<br/><br/>
loam vs. clay, 93<br/><br/>
Reynold’s number, 104<br/><br/>
moisture tension, 92–93<br/><br/>
Righting reflex, 21<br/><br/>
specific heat, 119<br/><br/>
Rods and cones, 222, 223, 224, 225–226<br/><br/>
temperature, 158–159
Roentgen, Wilhelm Conrad, 249<br/><br/>
water, 92–93<br/><br/>
Rolling friction, 24<br/><br/>
Solar radiation, 153–154<br/><br/>
Root (plant), and pressure, 92<br/><br/>
soil and, 159<br/><br/>
Rotational motion, 30, 31<br/><br/>
Somatosensory system, balance
equations for, 278<br/><br/>
maintenance, 21<br/><br/>
Running<br/><br/>
Sound, 162<br/><br/>
broad jump, 39–40<br/><br/>
acoustic traps, 176–177
center of mass motion in, 57–58
bell in a jar, 163<br/><br/>
energy expended in, 54–56<br/><br/>
clinical uses, 177<br/><br/>
metabolic rate, 43<br/><br/>
frequency, 163, 164, 172–173<br/><br/>
on a curved track, 47–48
intensity, 163<br/><br/>
speed, 53–54
and loudness, 173–175<br/><br/>
Rupture strength, 63<br/><br/>
logarithmic, 174<br/><br/>
Rutherford, E., 239, 240<br/><br/>
perception of, pitch, 172–173<br/><br/>
Sensitivity
produced by animals, 176<br/><br/>
of ear, 169, 172, 174–175<br/><br/>
properties, 162–165
logarithmic, 174<br/><br/>
pure tone, 163–164<br/><br/>
mechanical reasons for, 175<br/><br/>
speed, 164<br/><br/>
of eye, 226<br/><br/>
wave, 162<br/><br/>
Sensory aid, 211
wavelength (<i>λ</i>), 164<br/><br/>
Sensory neuron, 181<br/><br/>
Specific heat, 119, 284<br/><br/>
Shannon, Claude, 143<br/><br/>
Spectral line, 240<br/><br/>
Shark, and electric field, 198<br/><br/>
Spectrometer, 245<br/><br/>
Shock, electric, 204–205<br/><br/>
Spectroscopy, 244–245
stimulation of muscle with, 206<br/><br/>
absorption, 245 <br/><br/> <b>Index</b>
Spectroscopy (<i>cont</i>.)<br/><br/>
Sweating
emission, 245<br/><br/>
as negative feedback, 209<br/><br/>
Spectrum, absorption, 243<br/><br/>
cooling mechanisms, 155–156<br/><br/>
Speed
dehydration, 155<br/><br/>
defined, 272<br/><br/>
rate, 155<br/><br/>
light, 293<br/><br/>
Synapse, 193<br/><br/>
running, 53–54
synaptic transmission, 193–194<br/><br/>
sound, 164<br/><br/>
Synovial fluid, 25, 27<br/><br/>
walking, 52–53<br/><br/>
Systems approach, 209–210<br/><br/>
Spindle, 194<br/><br/>
Systolic pressure, 107<br/><br/>
Spontaneous emission, Spring, Squid, axon of, 183<br/><br/>
Telescope, 230–231<br/><br/>
Stability<br/><br/>
Temperature, 117–118
equilibrium and, 2–3
body, regulation of, 149–151
human body, 4–7<br/><br/>
critical, 156<br/><br/>
Standing
defined, 117<br/><br/>
at an incline, 25–26
skin, 150–151
broad jump, 37–39<br/><br/>
Terminal velocity, 41–42
tip-toe on one foot, 19, 20<br/><br/>
Thermal conductivity, 120–121<br/><br/>
Standing wave, 166–167<br/><br/>
in human body, 150, 151<br/><br/>
Static equilibrium, 2–3<br/><br/>
Thermal motion, 117<br/><br/>
defined, 282<br/><br/>
random, 124, 140<br/><br/>
Static force, 1–2<br/><br/>
Thermal radiation, 122<br/><br/>
Static friction, 23–24
emitted by soil, 158–159<br/><br/>
coefficient, 25<br/><br/>
Thermal velocity, 118<br/><br/>
Stefan-Boltzmann constant, 123<br/><br/>
Thermodynamics, <i>See also </i>Heat
Stenosis, 111, 112<br/><br/>
defined, 135<br/><br/>
Stethoscope, 111, 113, 177<br/><br/>
first law, 135–136<br/><br/>
electronic, 202<br/><br/>
of living systems, 140–142<br/><br/>
Stimulated emission, 252<br/><br/>
second law, 137–138<br/><br/>
Stirrup (middle ear), 169
information and, 143–144<br/><br/>
Strength of material, 61<br/><br/>
Thermophilic bacteria, 145<br/><br/>
bone, 64–68
Thompson, J. J., 239<br/><br/>
Stress<br/><br/>
Threshold
defined, 62<br/><br/>
of hearing, 173, 174<br/><br/>
stress cardiomyopathy, 109<br/><br/>
of pain, 173, 174<br/><br/>
Stretching
of vision, 225–226
longitudinal, 61–62<br/><br/>
Tissue
spring, 62–64<br/><br/>
light penetration, 232<br/><br/>
Stroke, ischemic, 112<br/><br/>
thermal conductivity, 122, 150<br/><br/> 32Sulphur, 269<br/><br/>
Tomography, computerized, 250–251, 257<br/><br/>
Surface potential, 194–196<br/><br/>
Torque, 279–280
recording of, 202–203
addition of force and, 281–282<br/><br/>
Surface tension, 89–91<br/><br/>
Torr, 83
insect locomotion on water and,
Torricelli, Evangelista, 83 93–95, 99<br/><br/>
Total internal reflection, 294, 295<br/><br/>
muscle contraction and, 95–96<br/><br/>
Tracer, isotopic, 268–269
soil water, 92–93<br/><br/>
Transistor amplifier, 211<br/><br/>
spherical liquid drops, 91–92<br/><br/>
Translational motion, 30<br/><br/>
Surfactants, 97–98
energy consumption, 42–43<br/><br/>
breathing and, 132<br/><br/>
for constant acceleration, 30–32<br/><br/>
secreted by insects, 99<br/><br/>
high jump, 36–37<br/><br/> <b>Index</b><br/><br/>
long jump
critical flow, 104<br/><br/>
standing, 37–39<br/><br/>
defined, 272<br/><br/>
running, 39–40<br/><br/>
terminal, 41–42<br/><br/>
projectile range, 37<br/><br/>
thermal, 118<br/><br/>
through air, 40–42<br/><br/>
Venule, 107<br/><br/>
vertical jump, 32–35<br/><br/>
Vertical jump<br/><br/>
Transmutation of nucleus, 257
effect of gravity on, 35<br/><br/>
Transport, of molecules, 126–127
height of, 32–35<br/><br/>
Triceps, 7<br/><br/> <i>Vespertilionidae </i>bat, echo location,
movement of, 11, 12<br/><br/> 175–176<br/><br/>
Turbulent fluid flow, 104–105<br/><br/>
Vestibular system, balance maintenance,
blood, 110–111<br/><br/> 21<br/><br/> <i>T </i>wave, 203<br/><br/>
Virtual image, 297<br/><br/>
Tympanic membrane, 162, 168, 169–170,
Viscosity, and Poiseuille’s law, 103–104<br/><br/> 175<br/><br/>
Viscous friction, 24, 103, Vision, 214–215
astigmatic, 227, 228, 229<br/><br/>
Ultrasonic
hyperopic, 227, 228, 229<br/><br/>
diathermy, 178<br/><br/>
image quality, 218–219<br/><br/>
flow meter, 178<br/><br/>
myopic, 227, 228, 229<br/><br/>
waves, 177–178
nervous system and, 226–227<br/><br/>
Ultrasound imaging, 177–178<br/><br/>
presbyopic, 217, 229<br/><br/>
Unit
range, 229–230<br/><br/>
calorie, 119<br/><br/>
threshold of, 225–226<br/><br/>
coulomb, 287<br/><br/>
Vitreous humor, 216<br/><br/>
diopter, 219<br/><br/>
Vocal cord, 176<br/><br/>
dyne, 285<br/><br/>
Voltage, 289<br/><br/>
farads, 291<br/><br/>
and current sources, 292<br/><br/>
henry, hertz, 163<br/><br/>
Walking, 50<br/><br/>
kilocalorie, 284
center of mass motion in, 56–57<br/><br/>
mho, 291<br/><br/>
on injured hip, 17<br/><br/>
newton, 5<br/><br/>
simple harmonic motion, 50–51<br/><br/>
of energy, 286<br/><br/>
speed, 52–53<br/><br/>
of force, 285<br/><br/>
Water
of length, 285<br/><br/>
content of food, 148<br/><br/>
of mass, 285<br/><br/>
density of, and floating, 87–88<br/><br/>
of power, 286<br/><br/>
elimination from body, 148<br/><br/>
of pressure, 285<br/><br/>
index of refraction, 220
pascal (Pa), 83<br/><br/>
insect locomotion on, 93–95<br/><br/>
poise, 103, 104<br/><br/>
latent heat of vaporization, 155<br/><br/>
radian, 276
mean free path of molecules in, 124<br/><br/>
siemen, 291<br/><br/>
osmosis, 129<br/><br/>
torr, 83<br/><br/>
sea, 89<br/><br/>
Uranium, isotopes of, 257<br/><br/>
soil, sound and, 166<br/><br/>
Vein, 105<br/><br/>
specific heat, 119<br/><br/>
blood pressure in, 109
speed of sound in, 164<br/><br/>
pulmonary, 105<br/><br/>
surface tension, 89<br/><br/>
Velocity
viscosity, 104<br/><br/>
angular, 276<br/><br/>
Wave, <i>See also </i>Sound
maximum, 54, 78–79<br/><br/>
defined, 162 <br/><br/> <b>Index</b>
Wave (<i>cont</i>.)<br/><br/>
heat converted into, 139–140<br/><br/>
diffraction, 168
implication of second law of thermody
fundamental and harmonic, 171, 172<br/><br/>
namics, 138<br/><br/>
interference, 166–167<br/><br/>
muscular movement, 42<br/><br/> <i>P</i>, 203<br/><br/>
Worm<br/><br/>
reflection and refraction, 165–166
hydrostatic forces in moving, 84–86
standing, 166–167<br/><br/>
movement of, 84<br/><br/> <i>T</i>, ultrasonic, 177–178<br/><br/>
X-ray, 243, 249–250<br/><br/>
wavelength, 164<br/><br/>
computerized tomography, 250–251,<br/><br/>
Weight, 274<br/><br/> 257<br/><br/>
loss, 155<br/><br/>
of lungs, 250<br/><br/>
Whiplash injury, Work
Young’s modulus, 62<br/><br/>
chemical energy and, 42<br/><br/>
of resilin, 79–80
defined, 43, 282<br/><br/>
rupture strength for materials and, 65
<b>This page intentionally left blank</b> <b>This page intentionally left blank</b> <b>This page intentionally left blank</b> <b>This page intentionally left blank</b> <b>This page intentionally left blank</b> <br/><h1>Document Outline</h1> <br/><li>Front Cover</li> <br/><li>Title: Physics in Biology and Medicine</li> <br/><li>ISBN 0123694116</li> <br/><li>Table of Contents (with page links) <ul> <li>1 Static Forces</li> <li>2 Friction</li> <li>3 Translational Motion</li> <li>4 Angular Motion</li> <li>5 Elasticity and Strength of Materials</li> <li>6 Insect Flight</li> <li>7 Fluids</li> <li>8 The Motion of Fluids</li> <li>9 Heat and Kinetic Theory</li> <li>10 Thermodynamics</li> <li>11 Heat and Life</li> <li>12 Waves and Sound</li> <li>13 Electricity</li> <li>14 Electrical Technology</li> <li>15 Optics</li> <li>16 Atomic Physics</li> <li>17 Nuclear Physics</li> <li>Appendices, Bibliography, Answers to Exercises, Index</li> </ul> </li> <br/><li>Preface</li> <br/><li>Abbreviations</li> <br/><li>Chapter 1. Static Forces <ul> <li>1.1 Equilibrium and Stability</li> <li>1.2 Equilibrium Considerations for the Human Body</li> <li>1.3 Stability of the Human Body under the Action of an External Force</li> <li>1.4 Skeletal Muscles</li> <li>1.5 Levers</li> <li>1.6 The Elbow</li> <li>1.7 The Hip</li> <li>1.8 The Back</li> <li>1.9 Standing Tip-Toe on One Foot</li> <li>1.10 Dynamic Aspects of Posture</li> <li>Exercises</li> </ul> </li> <br/><li>Chapter 2. Friction <ul> <li>2.1 Standing at an Incline</li> <li>2.2 Friction at the Hip Joint</li> <li>2.3 Spine Fin of a Catfish</li> <li>Exercises</li> </ul> </li> <br/><li>Chapter 3. Translational Motion <ul> <li>3.1 Vertical Jump</li> <li>3.2 Effect of Gravity on the Vertical Jump</li> <li>3.3 Running High Jump</li> <li>3.4 Range of a Projectile</li> <li>3.5 Standing Broad Jump</li> <li>3.6 Running Broad Jump (Long Jump)</li> <li>3.7 Motion through Air</li> <li>3.8 Energy Consumed in Physical Activity</li> <li>Exercises</li> </ul> </li> <br/><li>Chapter 4. Angular Motion <ul> <li>4.1 Forces on a Curved Path</li> <li>4.2 A Runner on a Curved Track</li> <li>4.3 Pendulum</li> <li>4.4 Walking</li> <li>4.5 Physical Pendulum</li> <li>4.6 Speed of Walking and Running</li> <li>4.7 Energy Expended in Running</li> <li>4.8 Alternate Perspectives on Walking and Running</li> <li>4.9 Carrying Loads</li> <li>Exercises</li> </ul> </li> <br/><li>Chapter 5. Elasticity and Strength of Materials <ul> <li>5.1 Longitudinal Stretch and Compression</li> <li>5.2 A Spring</li> <li>5.3 Bone Fracture: Energy Considerations</li> <li>5.4 Impulsive Forces</li> <li>5.5 Fracture Due to a Fall: Impulsive Force Considerations</li> <li>5.6 Airbags: Inflating Collision Protection Devices</li> <li>5.7 Whiplash Injury</li> <li>5.8 Falling from Great Height</li> <li>5.9 Osteoarthritis and Exercise</li> <li>Exercises</li> </ul> </li> <br/><li>Chapter 6. Insect Flight <ul> <li>6.1 Hovering Flight</li> <li>6.2 Insect Wing Muscles</li> <li>6.3 Power Required for Hovering</li> <li>6.4 Kinetic Energy of Wings in Flight</li> <li>6.5 Elasticity of Wings</li> <li>Exercises</li> </ul> </li> <br/><li>Chapter 7. Fluids <ul> <li>7.1 Force and Pressure in a Fluid</li> <li>7.2 Pascal’s Principle</li> <li>7.3 Hydrostatic Skeleton</li> <li>7.4 Archimedes’ Principle</li> <li>7.5 Power Required to Remain Afloat</li> <li>7.6 Buoyancy of Fish</li> <li>7.7 Surface Tension</li> <li>7.8 Soil Water</li> <li>7.9 Insect Locomotion on Water</li> <li>7.10 Contraction of Muscles</li> <li>7.11 Surfactants</li> <li>Exercises</li> </ul> </li> <br/><li>Chapter 8. The Motion of Fluids <ul> <li>8.1 Bernoulli’s Equation</li> <li>8.2 Viscosity and Poiseuille’s Law</li> <li>8.3 Turbulent Flow</li> <li>8.4 Circulation of the Blood</li> <li>8.5 Blood Pressure</li> <li>8.6 Control of Blood Flow</li> <li>8.7 Energetics of Blood Flow</li> <li>8.8 Turbulence in the Blood</li> <li>8.9 Arteriosclerosis and Blood Flow</li> <li>8.10 Power Produced by the Heart</li> <li>8.11 Measurement of Blood Pressure</li> <li>Exercises</li> </ul> </li> <br/><li>Chapter 9. Heat and Kinetic Theory <ul> <li>9.1 Heat and Hotness</li> <li>9.2 Kinetic Theory of Matter</li> <li>9.3 Definitions</li> <li>9.4 Transfer of Heat</li> <li>9.5 Transport of Molecules by Diffusion</li> <li>9.6 Diffusion through Membranes</li> <li>9.7 The Respiratory System</li> <li>9.8 Surfactants and Breathing</li> <li>9.9 Diffusion and Contact Lenses</li> <li>Exercises</li> </ul> </li> <br/><li>Chapter 10. Thermodynamics <ul> <li>10.1 First Law of Thermodynamics</li> <li>10.2 Second Law of Thermodynamics</li> <li>10.3 Difference between Heat and Other Forms of Energy</li> <li>10.4 Thermodynamics of Living Systems</li> <li>10.5 Information and the Second Law</li> <li>Exercises</li> </ul> </li> <br/><li>Chapter 11. Heat and Life <ul> <li>11.1 Energy Requirements of People</li> <li>11.2 Energy from Food</li> <li>11.3 Regulation of Body Temperature</li> <li>11.4 Control of Skin Temperature</li> <li>11.5 Convection</li> <li>11.6 Radiation</li> <li>11.7 Radiative Heating by the Sun</li> <li>11.8 Evaporation</li> <li>11.9 Resistance to Cold</li> <li>11.10 Heat and Soil</li> <li>Exercises</li> </ul> </li> <br/><li>Chapter 12. Waves and Sound <ul> <li>12.1 Properties of Sound</li> <li>12.2 Some Properties of Waves</li> <li>12.3 Hearing and the Ear</li> <li>12.4 Bats and Echoes</li> <li>12.5 Sounds Produced by Animals</li> <li>12.6 Acoustic Traps</li> <li>12.7 Clinical Uses of Sound</li> <li>12.8 Ultrasonic Waves</li> <li>Exercises</li> </ul> </li> <br/><li>Chapter 13. Electricity <ul> <li>13.1 The Nervous System</li> <li>13.2 Electricity in Plants</li> <li>13.3 Electricity in the Bone</li> <li>13.4 Electric Fish</li> <li>Exercises</li> </ul> </li> <br/><li>Chapter 14. Electrical Technology <ul> <li>14.1 Electrical Technology in Biological Research</li> <li>14.2 Diagnostic Equipment</li> <li>14.3 Physiological Effects of Electricity</li> <li>14.4 Control Systems</li> <li>14.5 Feedback</li> <li>14.6 Sensory Aids</li> <li>Exercises</li> </ul> </li> <br/><li>Chapter 15. Optics <ul> <li>15.1 Vision</li> <li>15.2 Nature of Light</li> <li>15.3 Structure of the Eye</li> <li>15.4 Accommodation</li> <li>15.5 Eye and the Camera</li> <li>15.6 Lens System of the Eye</li> <li>15.7 Reduced Eye</li> <li>15.8 Retina</li> <li>15.9 Resolving Power of the Eye</li> <li>15.10 Threshold of Vision</li> <li>15.11 Vision and the Nervous System</li> <li>15.12 Defects in Vision</li> <li>15.13 Lens for Myopia</li> <li>15.14 Lens for Presbyopia and Hyperopia</li> <li>15.15 Extension of Vision</li> <li>Exercises</li> </ul> </li> <br/><li>Chapter 16. Atomic Physics <ul> <li>16.1 The Atom</li> <li>16.2 Spectroscopy</li> <li>16.3 Quantum Mechanics</li> <li>16.4 Electron Microscope</li> <li>16.5 X-rays</li> <li>16.6 X-ray Computerized Tomography</li> <li>16.7 Lasers</li> <li>Exercises</li> </ul> </li> <br/><li>Chapter 17. Nuclear Physics <ul> <li>17.1 The Nucleus</li> <li>17.2 Magnetic Resonance Imaging</li> <li>17.3 Radiation Therapy</li> <li>17.4 Food Preservation by Radiation</li> <li>17.5 Isotopic Tracers</li> <li>17.6 Laws of Physics and Life</li> <li>Exercises</li> </ul> </li> <br/><li>Appendix A. Basic Concepts in Mechanics <ul> <li>A.1 Speed and Velocity</li> <li>A.2 Acceleration</li> <li>A.3 Force</li> <li>A.4 Pressure</li> <li>A.5 Mass</li> <li>A.6 Weight</li> <li>A.7 Linear Momentum</li> <li>A.8 Newton’s Laws of Motion</li> <li>A.9 Conservation of Linear Momentum</li> <li>A.10 Radian</li> <li>A.11 Angular Velocity</li> <li>A.12 Angular Acceleration</li> <li>A.13 Relations between Angular and Linear Motion</li> <li>A.14 Equations for Angular Momentum</li> <li>A.15 Centripetal Acceleration</li> <li>A.16 Moment of Inertia</li> <li>A.17 Torque</li> <li>A.18 Newton’s Laws of Angular Motion</li> <li>A.19 Angular Momentum</li> <li>A.20 Addition of Forces and Torques</li> <li>A.21 Static Equilibrium</li> <li>A.22 Work</li> <li>A.23 Energy</li> <li>A.24 Forms of Energy</li> <li>A.25 Power</li> <li>A.26 Units and Conversions</li> </ul> </li> <br/><li>Appendix B. Review of Electricity <ul> <li>B.1 Electric Charge</li> <li>B.2 Electric Field</li> <li>B.3 Potential Difference or Voltage</li> <li>B.4 Electric Current</li> <li>B.5 Electric Circuits</li> <li>B.6 Voltage and Current Sources</li> <li>B.7 Electricity and Magnetism</li> </ul> </li> <br/><li>Appendix C. Review of Optics <ul> <li>C.1 Geometric Optics</li> <li>C.2 Converging Lenses</li> <li>C.3 Images of Extended Objects</li> <li>C.4 Diverging Lenses</li> <li>C.5 Lens Immersed in a Material Medium</li> </ul> </li> <br/><li>Bibliography</li> <br/><li>Answers to Numerical Exercises</li> <br/><li>Index (with page links) <ul> <li>A</li> <li>B</li> <li>C</li> <li>D</li> <li>E</li> <li>F</li> <li>G</li> <li>H</li> <li>I</li> <li>J</li> <li>K</li> <li>L</li> <li>M</li> <li>N</li> <li>O</li> <li>P</li> <li>Q</li> <li>R</li> <li>S</li> <li>T</li> <li>U</li> <li>V</li> <li>W</li> <li>X,Y</li> </ul> </li> <br/></body></html>
<html><body>Section 17.6 <b>Laws of Physics and Life</b><br/><br/>
is one of the atoms in the amino acids that compose the protein molecules.<br/><br/>In nature, nitrogen is composed primarily of the isotope 14N. Only 0.36% of natural nitrogen is in the form of the nonradioactive isotope 15N. Ordinarily the amino acids reflect the natural composition of nitrogen.<br/><br/>
It is possible to synthesize amino acids in a laboratory. If the synthesis is
done with pure 15N, the amino acids are distinctly marked. The amino acid glycine produced in this way is introduced into the body of a subject where it is incorporated into the hemoglobin of the blood. Periodic sampling of the blood measures the number of blood cells containing the originally introduced glycine. Such experiments have shown that the average lifetime of a red blood cell is about four months.<br/><br/>
Radioactive isotopes can be traced more easily and in smaller quanti
ties than the isotopes that are not radioactive. Therefore, in reactions with elements that have radioactive isotopes, radioactive tracer techniques are preferred. Since the 1950s, when radioactive isotopes first became widely available, hundreds of important experiments have been conducted in this field.<br/><br/>
An example of this technique is the use of radioactive phosphorus in the
study of nucleic acids. The element phosphorus is an important component of the nucleic acids DNA and RNA. Naturally occurring phosphorus is all in the form 31P, and, of course, this is the isotope normally found in the nucleic acids. However, as discussed earlier, by bombarding sulphur 32 with neutrons, it is possible to produce the radioactive phosphorus 32P which has a half-life of 14.3 days. If the 32P isotope is introduced into the cell, the nucleic acids synthesized in the cell incorporate this isotope into their structure. The nucleic acids are then removed from the cell and their radioactivity is measured. From these measurements it is possible to calculate the rate at which nucleic acids are manufactured by the cell. These measurements, among others, provided evidence for the roles of DNA and RNA in cell functions.<br/><br/>
Radioactive tracers have been useful also in clinical measurements. In
one technique, the radioactive isotope of chromium is used to detect internal hemorrhage. This isotope is taken up by the blood cells, which then become radioactive. The radioactivity is, of course, kept well below the danger level.<br/><br/>If the circulation is normal, the radioactivity is distributed uniformly throughout the body. A pronounced increase in radioactivity in some region indicates a hemorrhage at that point.<br/><br/> <b>17.6</b><br/><br/> <b>Laws of Physics and Life</b><br/><br/>
We have discussed in this book many phenomena in the life sciences that are clearly explained by the theories of physics. Now we come to the most fundamental question: Can physics explain life itself? In other words, if we
Chapter 17 <b>Nuclear Physics</b>
put together the necessary combination of atoms, at each step following the known laws of physics, do we inevitably end up with a living organism, or must we invoke some new principles outside the realm of current physics in order to explain the occurrence of life? This is a very old question which still cannot be answered with certainty. But it can be clarified.<br/><br/>
Quantum mechanics, which is the fundamental theory of modern atomic
physics, has been very successful in describing the properties of atoms and the interaction of atoms with each other. Starting with a single proton and one electron, the theory shows that their interaction leads to the hydrogen atom with its unique configuration and properties. The quantum mechanical calculations for larger atoms are more complicated. In fact, so far a complete calculation has been performed only for the hydrogen atom. The properties of heavier atoms must be computed using various approximation techniques.<br/><br/>Yet there is little doubt that quantum mechanics describes all the properties of atoms from the lightest to the heaviest. The experimental evidence gathered over the past 100 years fully confirms this view.<br/><br/>
The interactions between atoms, which result in the formation of molecules,
are likewise in the domain of quantum mechanics. Here again exact solutions of the quantum mechanical equations have been obtained only for the simplest molecule, H2. Still it is evident that all the rules for both organic and inorganic chemistry follow from the principles of quantum mechanics. Even though our present numerical techniques cannot cope with the enormous calculations required to predict the exact configuration of a complex molecule, the concepts developed in physics and chemistry are applicable. The strengths of the interatomic bonds and the orientations of the atoms within the molecules are all in accord with the theory. This is true even for the largest organic molecules such as the proteins and DNA.<br/><br/>
Past this point, however, we encounter a new level of organization: the cell.<br/><br/>
The organic molecules, which are in themselves highly complex, combine to form cells, which in turn are combined to form larger living organisms, which possess all the amazing properties of life. These organisms take nourishment from the environment, grow, reproduce, and at some level begin to govern their own actions. Here it is no longer obvious that the theories governing the interaction of atoms lead directly to these functions that characterize life. We are now in the realm of speculations.<br/><br/>
The phenomena associated with life show such remarkable organization
and planning that we may be tempted to suggest that perhaps some new undiscovered law governs the behavior of organic molecules that come together to form life. Yet there is no evidence for any special laws operating within living systems. So far, on all levels of examination, the observed phenomena associated with life obey the well-known laws of physics. This does not mean that the existence of life follows from the basic principles of physics, but it may. In fact the large organic molecules inside cells are sufficiently complex to contain
within their structures the information necessary to guide in a predetermined way the activities associated with life. Some of these codes contained in the specific groupings of atoms within the molecules have now been unraveled.<br/><br/>Because of these specific structures, a given molecule always participates in a well-defined activity within the cell. It is very likely that all the complex functions of cells and of cell aggregates are simply the collective result of the enormously large number of predetermined but basically well-understood chemical reactions.<br/><br/>
This still leaves the most important question unanswered: What are the
forces and the principles that initially cause the atoms to assemble into coded molecules which then ultimately lead to life. The answer here is probably again within the scope of our existing theories of matter.<br/><br/>
In 1951, S. L. Miller simulated in his laboratory the type of conditions that
may have existed perhaps 3.5 billion years ago in the atmosphere of the primordial Earth. He circulated a mixture of water, methane, ammonia, and hydrogen through an electric discharge. The discharge simulated the energy sources that were then available from the sun, lightning, and radioactivity. After about one week Miller found that the chemical activities in the mixture produced organic molecules including some of the simple amino acids, which are the building blocks of proteins. Since then, hundreds of other organic molecules have been synthesized under similar conditions. Many of them resemble the components of the important large molecules found in cells. It is thus plausible that in the primordial oceans, rich in organic molecules produced by the prevailing chemical reactions, life began. A number of smaller organic molecules combined accidentally to form a large self-replicating molecule such as DNA. These, in turn, combined into organized aggregates and finally into living cells.<br/><br/>
Although the probability for the spontaneous occurrence of such events is
small, the time span of evolution is probably long enough to make this scenario plausible. If that is indeed the case, the current laws of physics can explain all of life. At the present state of knowledge about life processes, the completeness of the descriptions provided by physics cannot be proved. The principles of physics have certainly explained many phenomena, but mysteries remain. At present, however, there seems to be no need to invoke any new laws.<br/><br/>
<b>EXERCISES </b><br/><br/> <b>17-1. </b>Describe the basic principles of magnetic resonance imaging.<br/><br/><b>17-2. </b>What is your (considered) opinion of food preservation by radiation?<br/><br/><b>17-3. </b>Through a literature search describe the most recent use of fMRI.<br/><br/><b>17-4. </b>Discuss some of the most notable attributes of living systems that dis
tinguish them from inanimate ones.<br/><br/>
<b>Appendix A</b>
Basic Concepts in Mechanics<br/><br/>
In this section, we will define some of the fundamental concepts in mechanics.<br/><br/>We assume that the reader is familiar with these concepts and that here a simple summary will be sufficient. A detailed discussion can be found in basic physics texts, some of which are listed in the Bibliography.<br/><br/> <b>A.1</b><br/><br/> <b>Speed and Velocity</b><br/><br/>
Velocity is defined as the rate of change of position with respect to time. Both magnitude and direction are necessary to specify velocity. Velocity is, therefore, a vector quantity. The magnitude of the velocity is called <i>speed</i>. In the special case when the velocity of an object is constant, the distance <i>s </i>traversed in time <i>t </i>is given by <i>s </i> <i>vt</i><br/><br/>
(A.1)<br/><br/>
In this case, velocity can be expressed as <i>v </i> <i>s</i><br/><br/>
(A.2)<br/><br/> <i>t</i><br/><br/>
If the velocity changes along the path, the expression <i>s/t </i>yields the average velocity.<br/><br/> <b>272</b><br/><br/>
Section A.2 <b>Acceleration</b> <b>A.2</b><br/><br/> <b>Acceleration</b><br/><br/>
If the velocity of an object along its path changes from point to point, its motion is said to be <i>accelerated </i>(or decelerated). Acceleration is defined as the rate of change in velocity with respect to time. In the special case of uniform acceleration, the final velocity <i>v </i>of an object that has been accelerated for a time <i>t </i>is <i>v </i> <i>v</i>0 + <i>at</i><br/><br/>
(A.3)<br/><br/>
Here <i>v</i>0 is the initial velocity of the object, and <i>a </i>is the acceleration.1 Acceleration can, therefore, be expressed as <i>a </i> <i>v </i>− <i>v</i>0<br/><br/>
(A.4)<br/><br/> <i>t</i><br/><br/>
In the case of uniform acceleration, a number of useful relations can be
simply derived. The average velocity during the interval <i>t </i>is <i>v</i>av <i>v </i>+ <i>v</i>0<br/><br/>
(A.5)<br/><br/>
2<br/><br/>
The distance traversed during this time is <i>s </i> <i>v</i>av<i>t</i><br/><br/>
(A.6)<br/><br/>
Using Eqs. A.4 and A.5, we obtain <i>s </i> <i>v</i>0<i>t </i>+ <i>at </i>2<br/><br/>
(A.7)<br/><br/>
2<br/><br/>
By substituting <i>t </i> (<i>v </i>− <i>v</i>0)<i>/a </i>(from Eq. A.4) into Eq. A.7, we obtain <i>v</i>2 <i>v</i>2 + 2<i>as</i><br/><br/>
(A.8)<br/><br/>
0<br/><br/>
1Both velocity and acceleration may vary along the path. In general, velocity is defined as the
time derivative of the distance along the path of the object; that is,<br/><br/> <i>s</i><br/><br/> <i>v </i> lim<br/><br/>
<i>ds</i><br/><br/> <i></i><br/><br/> <i></i><br/><br/> <i>dt</i><br/><br/> <i>t </i>→ 0<br/><br/> <i>t</i><br/><br/>
Acceleration is defined as the time derivative of the velocity along the path; that is,
<br/><br/> <i>ds</i> <i>a </i> <i>dv </i> <i>d</i><br/><br/>
<i>d</i>2<i>s</i><br/><br/> <i>dt</i><br/><br/> <i>dt</i><br/><br/> <i>dt</i> <i>dt </i>2<br/><br/>
Appendix A <b>Basic Concepts in Mechanics</b><br/><br/> <b>A.3</b><br/><br/> <b>Force</b><br/><br/>
Force is a push or a pull exerted on a body which tends to change the state of motion of the body.<br/><br/> <b>A.4</b><br/><br/> <b>Pressure</b><br/><br/>
Pressure is the force applied to a unit area.<br/><br/> <b>A.5</b><br/><br/> <b>Mass</b><br/><br/>
We have stated that a force applied to a body tends to change its state of motion. All bodies have the property of resisting change in their motion. Mass<br/><br/>is a quantitative measure of inertia or the resistance to a change in motion.<br/><br/> <b>A.6</b><br/><br/> <b>Weight</b><br/><br/>
Every mass exerts an attractive force on every other mass; this attraction is called the <i>gravitational force</i>. The weight of a body is the force exerted on the body by the mass of the Earth. The weight of a body is directly proportional to its mass. Weight being a force is a vector, and it points vertically down in the direction of a suspended plumb line.<br/><br/>
Mass and weight are related but distinct properties of an object. If a body
were isolated from all other bodies, it would have no weight, but it would still have mass.<br/><br/> <b>A.7</b> <b>Linear Momentum</b><br/><br/>
Linear momentum of a body is the product of its mass and velocity; that is,<br/><br/>
Linear momentum <i>mv</i><br/><br/>
(A.9)<br/><br/> <b>A.8</b> <b>Newton’s Laws of Motion</b>
The foundations of mechanics are Newton’s three <i>laws of motion</i>. The laws are based on observation, and they cannot be derived from more basic principles. These laws can be stated as follows:<br/><br/> <b>First Law: </b><i>A body remains at rest or in a state of uniform motion in a straight</i> <i>line unless it is acted on by an applied force</i>.<br/><br/>
Section A.9 <b>Conservation of Linear Momentum</b><br/><br/> <b>Second Law: </b><i>The time rate of change of the linear momentum of a body is</i> <i>equal to the force F applied to it</i>.<br/><br/>
Except at very high velocities, where relativistic effects must be considered, the second law can be expressed mathematically in terms of the mass <i>m </i>and acceleration <i>a </i>of the object as2<br/><br/> <i>F </i> <i>ma</i><br/><br/>
(A.10)<br/><br/>
This is one of the most commonly used equations in mechanics. It shows that if the applied force and the mass of the object are known, the acceleration can be calculated. When the acceleration is known, the velocity of the object and the distance traveled can be computed from the previously given equations.<br/><br/>
The Earth’s gravitational force, like all other forces, causes an acceleration. By observing the motion of freely falling bodies, this acceleration has been measured. Near the surface of the Earth, it is approximately 9<i>.</i>8 m/sec2. Because gravitational acceleration is frequently used in computations, it has been given a special symbol <i>g</i>. Therefore, the gravitational force on an object with mass <i>m </i>is<br/><br/> <i>F</i>gravity <i>mg</i><br/><br/>
(A.11)<br/><br/>
This is, of course, also the weight of the object.<br/><br/> <b>Third Law: </b><i>For every action, there is an equal and opposite reaction</i>. This
law implies that when two bodies <i>A </i>and <i>B </i>interact so that <i>A </i>exerts a force on <i>B</i>, a force of the same magnitude but opposite in direction is exerted by <i>B </i>on <i>A</i>. A number of illustrations of the third law are given in the text.<br/><br/> <b>A.9</b> <b>Conservation of Linear Momentum</b>
It follows from Newton’s laws that the total linear momentum of a system of objects remains unchanged unless acted on by an outside force.<br/><br/>
2The second law can be expressed mathematically in terms of the time derivative of
momentum: that is,
<i>mv</i>(<i>t </i>+ <i>t</i>) − <i>mv</i>(<i>t</i>) <i>dv</i><br/><br/>
Force <br/><br/> <i></i><br/><br/>
<i>d </i>(<i>mv</i>) <i>m </i> <i>ma</i> <i>t </i>→ 0<br/><br/> <i>t</i><br/><br/> <i>dt</i><br/><br/> <i>dt</i><br/><br/> <br/><img src="./tmp/raw_656f49f53d8d3c5343596b2cc8b234fc-295_1.jpg"/><br/> <br/><img src="./tmp/raw_656f49f53d8d3c5343596b2cc8b234fc-295_2.png"/><br/>
Appendix A <b>Basic Concepts in Mechanics</b> <b>FIGURE A.1 </b> The radian.<br/><br/> <b>A.10</b><br/><br/> <b>Radian</b><br/><br/>
In the analysis of rotational motion, it is convenient to measure angles in a unit called a <i>radian</i>. With reference to Fig. A.1, the angle in radian units is defined as <i>θ </i> <i>s</i><br/><br/>
(A.12)<br/><br/> <i>r</i>
where <i>s </i>is the length of the circular arc and <i>r </i>is the radius of rotation. In a full circle, the arc length is the circumference 2<i>πr</i>. Therefore in radian units the angle in a full circle is <i>θ </i> 2<i>πr </i> 2<i>π </i>rad<br/><br/> <i>r</i><br/><br/>
Hence,
1 rad 360◦ 57<i>.</i>3◦<br/><br/>
2<i>π</i><br/><br/> <b>A.11</b> <b>Angular Velocity</b><br/><br/>
The angular velocity <i>ω </i>is the angular displacement per unit time; that is, if a body rotates through an angle <i>θ </i>(in radians) in a time <i>t</i>, the angular velocity is <i>ω </i> <i>θ </i>(rad/sec)<br/><br/>
(A.13)<br/><br/> <i>t</i><br/><br/>
Section A.14 <b>Equations for Angular Momentum</b><br/><br/> <b>A.12</b> <b>Angular Acceleration</b><br/><br/>
Angular acceleration <i>α </i>is the time rate of change of angular velocity. If the initial angular velocity is <i>ω</i>0 and the final angular velocity after a time <i>t </i>is <i>ωf</i>, the angular acceleration is3<br/><br/> <i>ωf </i>− <i>ω</i>0<br/><br/> <i>α </i><br/><br/>
(A.14)<br/><br/> <i>t</i><br/><br/> <b>A.13</b> <b>Relations between Angular and Linear Motion</b><br/><br/>
As an object rotates about an axis, each point in the object travels along the circumference of a circle; therefore, each point is also in linear motion. The linear distance <i>s </i>traversed in angular motion is <i>s </i> <i>rθ</i><br/><br/>
The linear velocity <i>v </i>of a point that is rotating at an angular velocity <i>ω </i>a distance <i>r </i>from the center of rotation is <i>v </i> <i>rω</i><br/><br/>
(A.15)<br/><br/>
The direction of the vector <i>v </i>is at all points tangential to the path <i>s</i>. The linear acceleration along the path <i>s </i>is <i>a </i> <i>rα</i><br/><br/>
(A.16)<br/><br/> <b>A.14</b> <b>Equations for Angular Momentum</b><br/><br/>
The equations for angular motion are analogous to the equations for translational motion. For a body moving with a constant angular acceleration <i>α </i>and initial angular velocity <i>ω</i>0, the relationships are shown in Table A.1.<br/><br/>
3Both angular velocity and angular acceleration may vary along the path. In general, the
instantaneous angular velocity and acceleration are defined as <i>ω </i> <i>dθ </i>; <i>α </i> <i>dω </i> <i>d </i>2<i>θ</i><br/><br/> <i>dt</i><br/><br/> <i>dt</i> <i>dt </i>2<br/><br/>
Appendix A <b>Basic Concepts in Mechanics</b> <b>TABLE A.1 </b> <b>Equations for</b> <b>Rotational Motion (angular<br/>acceleration, </b><i>α </i> <b>constant)</b><br/><br/> <i>ω</i>
<i>ω </i>+<br/><br/>
0<br/><br/> <i>αt</i><br/><br/> <i>θ</i><br/><br/>
<i>ω</i>0<i>t </i>+ 1<i>αt</i>2<br/><br/>
2<br/><br/> <i>ω</i>2 <i>ω</i>2 + 2<i>αθ</i><br/><br/>
0<br/><br/>
+ <i>ω</i>)<br/><br/> <i>ω</i><br/><br/>
(<i>ω</i>0<br/><br/>
av<br/><br/>
2<br/><br/> <b>A.15</b> <b>Centripetal Acceleration</b><br/><br/>
As an object rotates uniformly around an axis, the magnitude of the linear velocity remains constant, but the direction of the linear velocity is continuously changing. The change in velocity always points toward the center of rotation. Therefore, a rotating body is accelerated toward the center of rotation. This acceleration is called <i>centripetal </i>(center-seeking) <i>acceleration</i>.<br/><br/>The magnitude of the centripetal acceleration is given by <i>ac </i> <i>v</i>2 <i>ω</i>2<i>r</i><br/><br/>
(A.17)<br/><br/> <i>r</i>
where <i>r </i>is the radius of rotation and <i>v </i>is the speed tangential to the path of rotation. Because the body is accelerated toward its center of rotation, we conclude from Newton’s second law that a force pointing toward the center of rotation must act on the body. This force, called the <i>centripetal force Fc</i>, is given by <i>Fc </i> <i>mac </i> <i>mv</i>2 <i>mω</i>2<i>r</i><br/><br/>
(A.18)<br/><br/> <i>r</i>
where <i>m </i>is the mass of the rotating body.<br/><br/>
For a body to move along a curved path, a centripetal force must be applied
to it. In the absence of such a force, the body moves in a straight line, as required by Newton’s first law. Consider, for example, an object twirled at the end of a rope. The centripetal force is applied by the rope on the object.<br/><br/>From Newton’s third law, an equal but opposite reaction force is applied on the rope by the object. The reaction to the centripetal force is called the <i>centrifugal force</i>. This force is in the direction away from the center of rotation.<br/><br/>The centripetal force, which is required to keep the body in rotation, always acts perpendicular to the direction of motion and, therefore, does no work
Section A.17 <b>Torque</b> <b>TABLE A.2 </b> <b>Moments of Inertia of Some Simple Bodies</b><br/><br/> <b>Body</b><br/><br/> <b>Location of axis</b><br/><br/> <b>Moment of inertia</b><br/><br/>
A thin rod of length <i>l </i>Through the center<br/><br/> <i>ml</i>2<i>/</i>12<br/><br/>
A thin rod of length <i>l </i>Through one end<br/><br/> <i>ml</i>2<i>/</i>3<br/><br/>
Sphere of radius <i>r</i><br/><br/>
Along a diameter<br/><br/>
2<i>mr</i>2<i>/</i>5<br/><br/>
Cylinder of radius <i>r</i><br/><br/>
Along axis of symmetry <i>mr</i>2<i>/</i>2
(see Eq. A.28). In the absence of friction, energy is not required to keep a body rotating at a constant angular velocity.<br/><br/> <b>A.16</b><br/><br/> <b>Moment of Inertia</b><br/><br/>
The moment of inertia in angular motion is analogous to mass in translational motion. The moment of inertia <i>I </i>of an element of mass <i>m </i>located a distance <i>r<br/></i>from the center of rotation is<br/><br/> <i>I </i> <i>mr </i>2<br/><br/>
(A.19)<br/><br/>
In general, when an object is in angular motion, the mass elements in the
body are located at different distances from the center of rotation. The total moment of inertia is the sum of the moments of inertia of the mass elements in the body.<br/><br/>
Unlike mass, which is a constant for a given body, the moment of inertia
depends on the location of the center of rotation. In general, the moment of inertia is calculated by using integral calculus. The moments of inertia for a few objects useful for our calculations are shown in Table A.2.<br/><br/> <b>A.17</b><br/><br/> <b>Torque</b><br/><br/>
Torque is defined as the tendency of a force to produce rotation about an axis.<br/><br/>Torque, which is usually designated by the letter <i>L</i>, is given by the product of the perpendicular force and the distance <i>d </i>from the point of application to the axis of rotation; that is (see Fig. A.2), <i>L </i> <i>F </i>cos <i>θ </i>× <i>d</i><br/><br/>
(A.20)<br/><br/>
The distance <i>d </i>is called the <i>lever arm </i>or <i>moment arm</i>.<br/><br/> <br/><img src="./tmp/raw_656f49f53d8d3c5343596b2cc8b234fc-299_1.jpg"/><br/> <br/><img src="./tmp/raw_656f49f53d8d3c5343596b2cc8b234fc-299_2.png"/><br/>
Appendix A <b>Basic Concepts in Mechanics</b> <b>FIGURE A.2 </b> Torque produced by a force.<br/><br/> <b>A.18</b> <b>Newton’s Laws of Angular Motion</b><br/><br/>
The laws governing angular motion are analogous to the laws of translational motion. Torque is analogous to force, and the moment of inertia is analogous to mass.<br/><br/> <b>First Law: </b>A body in rotation will continue its rotation with a constant angu
lar velocity unless acted upon by an external torque.<br/><br/> <b>Second Law: </b>The mathematical expression of the second law in angular
motion is analogous to Eq. A.10. It states that the torque is equal to the product of the moment of inertia and the angular acceleration; that is, <i>L </i> <i>Iα</i>
(A.21)<br/><br/> <b>Third Law: </b>For every torque, there is an equal and opposite reaction torque.<br/><br/> <b>A.19</b> <b>Angular Momentum</b><br/><br/>
Angular momentum is defined as
Angular momentum <i>Iω</i><br/><br/>
(A.22)<br/><br/>
From Newton’s laws, it can be shown that angular momentum of a body is conserved if there is no unbalanced external torque acting on the body.<br/><br/> <br/><img src="./tmp/raw_656f49f53d8d3c5343596b2cc8b234fc-300_1.jpg"/><br/> <br/><img src="./tmp/raw_656f49f53d8d3c5343596b2cc8b234fc-300_2.png"/><br/>
Section A.20 <b>Addition of Forces and Torques</b> <b>FIGURE A.3 </b> The resolution of a force into its vertical and horizontal components.<br/><br/> <b>A.20</b> <b>Addition of Forces and Torques</b><br/><br/>
Any number of forces and torques can be applied simultaneously to a given object. Because forces and torques are vectors, characterized by both a magnitude and a direction, their net effect on a body is obtained by vectorial addition.<br/><br/>When it is required to obtain the total force acting on a body, it is often convenient to break up each force into mutually perpendicular components. This is illustrated for the two-dimensional case in Fig. A.3. Here we have chosen the horizontal <i>x</i>- and the vertical <i>y</i>-directions as the mutually perpendicular axes. In a more general three-dimensional case, a third axis is required for the analysis.<br/><br/>
The two perpendicular components of the force <i>F </i>are <i>Fx </i> <i>F </i>cos <i>θ</i><br/><br/>
(A.23)<br/><br/> <i>Fy </i> <i>F </i>sin <i>θ</i><br/><br/>
The magnitude of the force <i>F </i>is given by <br/><br/> <i>F </i><br/><br/> <i>F </i>2 <i>x </i>+ <i>F </i>2<br/><br/> <i>y</i><br/><br/>
(A.24)<br/><br/>
When adding a number of forces (<i>F</i>1<i>, F</i>2<i>, F</i>3<i>, . . .</i>) the mutually perpendic
ular components of the total force <i>FT </i>are obtained by adding the corresponding
Appendix A <b>Basic Concepts in Mechanics</b>
components of each force; that is,
(<i>FT</i>)<i>x </i> (<i>F</i>1)<i>x </i>+ (<i>F</i>2)<i>x </i>+ (<i>F</i>3)<i>x </i>+ · · ·<br/><br/>
(A.25)<br/><br/>
(<i>FT</i>)<i>y </i> (<i>F</i>1)<i>y </i>+ (<i>F</i>2)<i>y </i>+ (<i>F</i>3)<i>y </i>+ · · ·<br/><br/>
The magnitude of the total force is <br/><br/> <i>FT </i>
(<i>FT</i>)2<i>x </i>+ (<i>FT</i>)2<i>y</i><br/><br/>
(A.26)<br/><br/>
The torque produced by a force acts to produce a rotation in either a clockwise
or a counterclockwise direction. If we designate one direction of rotation as positive and the other as negative, the total torque acting on a body is obtained by the addition of the individual torques each with the appropriate sign.<br/><br/> <b>A.21</b> <b>Static Equilibrium</b><br/><br/>
A body is in static equilibrium if both its linear and angular acceleration are zero. To satisfy this condition, the sum of the forces <i>F </i>acting on the body, as well as the sum of the torques <i>L </i>produced by these forces must be zero; that is,<br/><br/> <b>P</b><br/><br/> <b>P</b><br/><br/> <i>F </i> 0 and<br/><br/> <i>L </i> 0<br/><br/>
(A.27)<br/><br/> <b>A.22</b><br/><br/> <b>Work</b><br/><br/>
In our everyday language, the word <i>work </i>denotes any types of effort whether physical or mental. In physics, a more rigorous definition is required. Here work is defined as the product of force and the distance through which the force acts.<br/><br/>Only the force parallel to the direction of motion does work on the object. This is illustrated in Fig. A.4. A force <i>F </i>applied at an angle <i>θ </i>pulls the object along the surface through a distance <i>D</i>. The work done by the force is
Work <i>F </i>cos <i>θ </i>× <i>D</i>
(A.28)<br/><br/> <b>A.23</b><br/><br/> <b>Energy</b>
Energy is an important concept. We find reference to energy in connection with widely different phenomena. We speak of atomic energy, heat energy, potential energy, solar energy, chemical energy, kinetic energy; we even speak
<br/><img src="./tmp/raw_656f49f53d8d3c5343596b2cc8b234fc-302_1.jpg"/><br/> <br/><img src="./tmp/raw_656f49f53d8d3c5343596b2cc8b234fc-302_2.png"/><br/>
Section A.24 <b>Forms of Energy</b> <b>FIGURE A.4 </b> Work done by a force.<br/><br/>
of people as being full of energy. The common factor that ties together these manifestations is the possibility of obtaining work from these sources. The connection between energy and work is simple: Energy is required to do work. Energy is measured in the same units as work; in fact, there is a oneto-one correspondence between them. It takes 2 J of energy to do 2 J of work.<br/><br/>In all physical processes, energy is conserved. Through work, one form of energy can be converted into another, but the total amount of energy remains unchanged.<br/><br/> <b>A.24</b><br/><br/> <b>Forms of Energy</b> <b>A.24.1 Kinetic Energy</b><br/><br/>
Objects in motion can do work by virtue of their motion. For example, when a moving object hits a stationary object, the stationary object is accelerated.<br/><br/>This implies that the moving object applied a force on the stationary object and performed work on it. The kinetic energy (<i>KE</i>) of a body with mass <i>m<br/></i>moving with a velocity <i>v </i>is <i>KE </i> 1 <i>mv</i>2<br/><br/>
(A.29)<br/><br/>
2<br/><br/>
In rotational motion, the kinetic energy is <i>KE </i> 1 <i>Iω</i>2<br/><br/>
(A.30)<br/><br/>
2<br/><br/> <b>A.24.2 Potential Energy</b><br/><br/>
Potential energy of a body is the ability of the body to do work because of its position or configuration. A body of weight <i>W </i>raised to a height <i>H </i>with respect
Appendix A <b>Basic Concepts in Mechanics</b>
to a surface has a potential energy (<i>PE</i>) <i>PE </i> <i>WH</i><br/><br/>
(A.31)<br/><br/>
This is the amount of work that had to be performed to raise the body to height <i>H</i>. The same amount of energy can be retrieved by lowering the body back to the surface.<br/><br/>
A stretched or compressed spring possesses potential energy. The force
required to stretch or compress a spring is directly proportional to the length of the stretch or compression (<i>s</i>); that is, <i>F </i> <i>ks</i><br/><br/>
(A.32)<br/><br/>
Here <i>k </i>is the spring constant. The potential energy stored in the stretched or compressed spring is <i>PE </i> 1 <i>ks</i>2<br/><br/>
(A.33)<br/><br/>
2<br/><br/> <b>A.24.3 Heat</b><br/><br/>
Heat is a form of energy, and as such it can be converted to work and other forms of energy. Heat, however, is not equal in rank with other forms of energy. While work and other forms of energy can be completely converted to heat, heat energy can only be converted partially to other forms of energy.<br/><br/>This property of heat has far-reaching consequences which are discussed in Chapter 10.<br/><br/>
Heat is measured in calorie units. One calorie (cal) is the amount of heat
required to raise the temperature of 1 g of water by 1 C◦. The heat energy required to raise the temperature of a unit mass of a substance by 1 degree is called the <i>specific heat</i>. One calorie is equal to 4.184 J.<br/><br/>
A heat unit frequently used in chemistry and in food technology is the <i>kilocalorie </i>or Cal which is equal to 1000 cal.<br/><br/> <b>A.25</b><br/><br/> <b>Power</b><br/><br/>
The amount of work done—or energy expended—per unit time is called <i>power</i>. The algebraic expression for power is <i>P </i> <i>E</i>
(A.34)<br/><br/> <i>t</i><br/><br/>
where <i>E </i>is the energy expended in a time interval <i>t</i>.<br/><br/>
Section A.26 <b>Units and Conversions</b> <b>A.26</b><br/><br/> <b>Units and Conversions</b><br/><br/>
In our calculations we will mostly use SI units in which the basic units for length, mass, and time are meter, kilogram, and second. However, other units are also encountered in the text. Units and conversion factors for the most commonly encountered quantities are listed here with their abbreviations.<br/><br/> <b>A.26.1 Length</b> <b>SI unit:</b>
meter (m) <b>Conversions: </b>1 m 100 cm (centimeter) 1000 mm (millimeter)
1000 m 1 km 1 m 3<i>.</i>28 feet 39<i>.</i>37 in 1 km 0<i>.</i>621 mile 1 in 2<i>.</i>54 cm<br/><br/>
In addition, the micron and the angstrom are used frequently in physics and
biology.<br/><br/>
1 micron (<i>μ</i>m) 10−6 m 10−4 cm 1 angstrom ( ˚
A)∗ 10−8 cm<br/><br/> <b>A.26.2 Mass</b> <b>SI unit:</b>
kilogram (kg) <b>Conversions: </b>1 kg 1000 g<br/><br/>
The weight of a 1-kg mass is 9.8 newton (N).<br/><br/> <b>A.26.3 Force</b> <b>SI Unit:</b>
kg m s−2, name of unit: newton (N) <b>Conversions: </b>1 N 105 dynes (dyn) 0<i>.</i>225 lbs<br/><br/> <b>A.26.4 Pressure</b> <b>SI unit:</b>
kg m−1 s−2, name of unit: pascal (Pa) <b>Conversions: </b>1 Pa 10−1 dynes/cm2 9<i>.</i>87 × 10−6 atmosphere (atm)
1<i>.</i>45 × 10−4 lb/in2
1 atm 1<i>.</i>01 × 105 Pa 760 mmHg (torr)
Appendix A <b>Basic Concepts in Mechanics</b> <b>A.26.5 Energy</b> <b>SI unit:</b>
kg m−2 s−2, name of unit: joule (J) <b>Conversion: </b>1 J 1 N-m 107 ergs 0<i>.</i>239 cal 0<i>.</i>738 ft-lb <b>A.26.6 Power</b> <b>SI unit:</b><br/><br/>
J s−1, name of unit: watt (W) <b>Conversion: </b>1 W 107 ergs/sec 1<i>.</i>34 × 10−3 horsepower (hp)
<b>Appendix B</b>
Review of Electricity<br/><br/> <b>B.1</b> <b>Electric Charge</b><br/><br/>
Matter is composed of atoms. An atom consists of a nucleus surrounded by electrons. The nucleus itself is composed of protons and neutrons. Electric charge is a property of protons and electrons. There are two types of electric charge: positive and negative. The proton is positively charged, and the electron is negatively charged. All electrical phenomena are due to these electric charges.<br/><br/>
Charges exert forces on each other. Unlike charges attract and like charges
repel each other. The electrons are held around the nucleus by the electrical attraction of the protons. Although the proton is about 2000 times heavier than the electron, the magnitude of the charge on the two is the same. There are as many positively charged protons in an atom as negatively charged electrons.<br/><br/>The atom as a whole is, therefore, electrically neutral. The identity of an atom is determined by the number of protons in the nucleus. Thus, for example, hydrogen has 1 proton; nitrogen has 7 protons; and gold has 79 protons.<br/><br/>
It is possible to remove electrons from an atom, making it positively charged.<br/><br/>
Such an atom with missing electrons is called a <i>positive ion</i>. It is also possible to add an electron to an atom which makes it a <i>negative ion</i>.<br/><br/>
Electric charge is measured in coulombs (C). The magnitude of the charge
on the proton and the electron is 1<i>.</i>60 × 10−19 C. The force <i>F </i>between two charged bodies is proportional to the product of their charges <i>Q</i>1 and <i>Q</i>2 and is inversely proportional to the square of the distance <i>R </i>between them; that is, <i>F </i> <i>KQ</i>1<i>Q</i>2
(B.1)<br/><br/> <i>R</i>2<br/><br/> <b>287</b><br/><br/> <br/><img src="./tmp/raw_656f49f53d8d3c5343596b2cc8b234fc-307_1.jpg"/><br/>
Appendix B <b>Review of Electricity</b><br/><br/>
This equation is known as <i>Coulomb’s law</i>. If <i>R </i>is measured in meters, the
constant <i>K </i>is 9 × 109, and <i>F </i>is obtained in newtons.<br/><br/> <b>B.2</b> <b>Electric Field</b><br/><br/>
An electric charge exerts a force on another electric charge; a mass exerts a force on another mass; and a magnet exerts a force on another magnet. All these forces have an important common characteristic: Exertion of the force does not require physical contact between the interacting bodies. The forces act at a distance. The concept of <i>lines of force </i>or <i>field lines </i>is useful in visualizing these forces which act at a distance.<br/><br/>
Any object that exerts a force on another object without contact can be
thought of as having lines of force emanating from it. The complete line configuration is called a <i>force field</i>. The lines point in the direction of the force, and their density at any point in space is proportional to the magnitude of the force at that point.<br/><br/>
The lines of force emanate from an electric charge uniformly in all direc
tions. By convention, the lines point in the direction of the force that the source charge exerts on a positive charge. Thus, the lines of force point away from a positive source charge and into a negative source charge (see Fig. B.1). The number of lines emanating from the charge is proportional to the magnitude of the electric charge. If the size of the source charge is doubled, the number of force lines is also doubled.<br/><br/>
Lines of force need not be straight lines; as we mentioned, they point in
the direction in which the force is exerted. As an example, we can consider the <b>FIGURE B.1 </b> Two-dimensional representation of the electric field produced by a
positive point charge (a) and a negative point charge (b).<br/><br/> <br/><img src="./tmp/raw_656f49f53d8d3c5343596b2cc8b234fc-308_1.jpg"/><br/>
Section B.4 <b>Electric Current</b> <b>FIGURE B.2 </b> Lines of force produced by a positive and a negative charge separated
by a distance <i>d</i>.<br/><br/>
net field due to two charges separated by a distance <i>d</i>. To determine this field we must compute the direction and size of the net force on a positive charge at all points in space. This is done by adding vectorially the force lines due to each charge. The force field due to a positive and negative charge of equal magnitude separated by a distance <i>d </i>from each other is shown in Fig. B.2.<br/><br/>Here the lines of force are curved. This is, of course, the direction of the net force on a positive charge in the region surrounding the two fixed charges.<br/><br/>The field shown in Fig. B.2 is called a <i>dipole field</i>, and it is similar to the field produced by a bar magnet.<br/><br/> <b>B.3</b> <b>Potential Difference or Voltage</b><br/><br/>
The electric field is measured in units of volt per meter (or volt per centimeter).<br/><br/>The product of the electric field and the distance over which the field extends is an important parameter which is called <i>potential difference </i>or <i>voltage</i>. The voltage (<i>V </i>) between two points is a measure of energy transfer as the charge moves between the two points. Potential difference is measured in volts. If there is a potential difference between two points, a force is exerted on a charge placed in the region between these points. If the charge is positive, the force tends to move it away from the positive point and toward the negative point.<br/><br/> <b>B.4</b> <b>Electric Current</b><br/><br/>
An electric current is produced by a motion of charges. The magnitude of the current depends on the amount of charge flowing past a given point in a given period of time. Current is measured in amperes (A). One ampere is 1 coulomb (C) of charge flowing past a point in 1 second (sec).<br/><br/> <br/><img src="./tmp/raw_656f49f53d8d3c5343596b2cc8b234fc-309_1.jpg"/><br/> <br/><img src="./tmp/raw_656f49f53d8d3c5343596b2cc8b234fc-309_2.png"/><br/> <br/><img src="./tmp/raw_656f49f53d8d3c5343596b2cc8b234fc-309_3.jpg"/><br/> <br/><img src="./tmp/raw_656f49f53d8d3c5343596b2cc8b234fc-309_4.jpg"/><br/>
Appendix B <b>Review of Electricity</b><br/><br/> <b>B.5</b> <b>Electric Circuits</b><br/><br/>
The amount of current flowing between two points in a material is proportional to the potential difference between the two points and to the electrical properties of the material. The electrical properties are usually represented by three parameters: resistance, capacitance, and inductance. Resistance measures the opposition to current flow. This parameter depends on the property of the material called <i>resistivity</i>, and it is analogous to friction in mechanical motion. Capacitance measures the ability of the material to store electric charges. Inductance measures the opposition in the material to changes in current flow. All materials exhibit to some extent all three of these properties; often, however, one of these properties is predominant. It is possible to manufacture components with specific values of resistance, capacitance, or inductance. These are called, respectively, <i>resistors, capacitors</i>, and <i>inductors</i>.<br/><br/>
The schematic symbols for these three electrical components are shown in
Fig. B.3. Electrical components can be connected together to form an electric circuit. Currents can be controlled by the appropriate choice of components and interconnections in the circuit. An example of an electric circuit is shown in Fig. B.4. Various techniques have been developed to analyze such circuits and to calculate voltages and currents at all the points in the circuit.<br/><br/> <b>B.5.1 Resistor</b><br/><br/>
The resistor is a circuit component that opposes current flow. Resistance (<i>R</i>) is measured in units of ohm (<i></i>). The relation between current (<i>I </i>) and <b>FIGURE B.3 </b> Circuit components.<br/><br/> <b>FIGURE B.4 </b> Example of an electric circuit.<br/><br/> <br/><img src="./tmp/raw_656f49f53d8d3c5343596b2cc8b234fc-310_1.jpg"/><br/> <br/><img src="./tmp/raw_656f49f53d8d3c5343596b2cc8b234fc-310_2.png"/><br/>
Section B.5 <b>Electric Circuits</b>
voltage (<i>V </i>) is given by Ohm’s law, which is<br/><br/> <i>V </i> <i>IR</i><br/><br/>
(B.2)<br/><br/>
Materials that present a very small resistance to current flow are called <i>conductors</i>. Materials with a very large resistance are called <i>insulators</i>. A flow of current through a resistor is always accompanied by power dissipation as electrical energy is converted to heat. The power (<i>P</i>) dissipated in a resistor is given by <i>P </i> <i>I</i>2<i>R</i><br/><br/>
(B.3)<br/><br/>
The inverse of resistance is called <i>conductance</i>, which is usually designated by the symbol <i>G</i>. Conductance is measured in units of <i>mho</i>, also called <i>Siemens</i>.<br/><br/>The relationship between conductance and resistance is<br/><br/> <i>G </i> 1<br/><br/>
(B.4)<br/><br/> <i>R</i> <b>B.5.2 Capacitor</b><br/><br/>
The capacitor is a circuit element that stores electric charges. In its simplest form it consists of two conducting plates separated by an insulator (see Fig. B.5). Capacitance (<i>C</i>) is measured in <i>farads</i>. The relation between the stored charge (<i>Q</i>), and the voltage across the capacitor is given by <i>Q </i> <i>CV</i><br/><br/>
(B.5)<br/><br/>
In a charged capacitor, positive charges are on one side of the plate, and
negative charges are on the other. The amount of energy (<i>E</i>) stored in such a configuration is given by <i>E </i> 1 <i>CV </i>2<br/><br/>
(B.6)<br/><br/>
2<br/><br/> <b>FIGURE B.5 </b> A simple capacitor.<br/><br/> <br/><img src="./tmp/raw_656f49f53d8d3c5343596b2cc8b234fc-311_1.jpg"/><br/> <br/><img src="./tmp/raw_656f49f53d8d3c5343596b2cc8b234fc-311_2.png"/><br/>
Appendix B <b>Review of Electricity</b> <b>B.5.3 Inductor</b><br/><br/>
The <i>inductor </i>is a device that opposes a change in the current flowing through it. Inductance is measured in units called <i>henry</i>.<br/><br/> <b>B.6</b> <b>Voltage and Current Sources</b><br/><br/>
Voltages and currents can be produced by various batteries and generators.<br/><br/>Batteries are based on chemical reactions that result in a separation of positive and negative charges within a material. Generators produce a voltage by the motion of conductors in magnetic fields. The circuit symbols for these sources are shown in Fig. B.6.<br/><br/> <b>B.7</b><br/><br/> <b>Electricity and Magnetism</b><br/><br/>
Electricity and magnetism are related phenomena. A changing electric field always produces a magnetic field, and a changing magnetic field always produces an electric field. All electromagnetic phenomena can be traced to this basic interrelationship. A few of the consequences of this interaction follow:<br/><br/> <b>1. </b>An electric current always produces a magnetic field at a direction
perpendicular to the current flow.<br/><br/> <b>2. </b>A current is induced in a conductor that moves perpendicular to a
magnetic field.<br/><br/> <b>3. </b>An oscillating electric charge emits electromagnetic waves at the
frequency of oscillation. This radiation propagates away from the source at the speed of light. Radio waves, light, and X-rays are examples of electromagnetic radiation.<br/><br/> <b>FIGURE B.6 </b> Circuit symbols for a battery and a generator.<br/><br/>
<b>Appendix C</b><br/><br/>
Review of Optics<br/><br/> <b>C.1</b> <b>Geometric Optics</b><br/><br/>
The characteristics of optical components, such as mirrors and lenses, can be completely derived from the wave properties of light. Such detailed calculations, however, are usually rather complex because one has to keep track of the wave front along every point on the optical component. It is possible to simplify the problem if the optical components are much larger than the wavelength of light. The simplification entails neglecting some of the wave properties of light and considering light as a ray traveling perpendicular to the wave front (Fig. C.1). In a homogeneous medium, the ray of light travels in a straight line; it alters direction only at the interface between two media. This simplified approach is called <i>geometric optics</i>.<br/><br/>
The speed of light depends on the medium in which it propagates. In
vacuum, light travels at a speed of 3 × 108 m/sec. In a material medium, the speed of light is always less. The speed of light in a material is characterized by the index of refraction (<i>n</i>) defined as <i>n </i> <i>c</i><br/><br/>
(C.1)<br/><br/> <i>v</i>
where <i>c </i>is the speed of light in vacuum and <i>v </i>is the speed in the material.<br/><br/>When light enters from one medium into another, its direction of propagation is changed (see Fig. C.2). This phenomenon is called <i>refraction</i>. The relationship between the angle of incidence (<i>θ</i>1) and the angle of refraction (<i>θ</i>2)<br/><br/> <b>293</b><br/><br/> <br/><img src="./tmp/raw_656f49f53d8d3c5343596b2cc8b234fc-313_1.jpg"/><br/> <br/><img src="./tmp/raw_656f49f53d8d3c5343596b2cc8b234fc-313_2.png"/><br/>
Appendix C <b>Review of Optics</b> <b>FIGURE C.1 </b> Light rays perpendicular to the wave front.<br/><br/>
is given by
sin <i>θ</i>1 <i>n</i>2<br/><br/>
(C.2)<br/><br/>
sin <i>θ</i>2<br/><br/> <i>n</i>1<br/><br/>
The relationship in Eq. C.2 is called <i>Snell’s law</i>. As shown in Fig. C.2, some of the light is also reflected. The angle of reflection is always equal to the angle of incidence.<br/><br/>
In Fig. C.2a, the angle of incidence <i>θ</i>1 for the entering light is shown to
be greater than the angle of refraction <i>θ</i>2. This implies that <i>n</i>2 is greater than <i>n</i>1 as would be the case for light entering from air into glass, for example (see Eq. C.2). If, on the other hand, the light originates in the medium of higher refractive index, as shown in Fig. C.2b, then the angle of incidence <i>θ</i>1 is smaller than the angle of refraction <i>θ</i>2. At a specific value of angle <i>θ</i>1 called the <i>critical angle </i>(designated by the symbol <i>θc</i>), the light emerges tangent to the surface, that is, <i>θ</i>2 90◦. At this point, sin <i>θ</i>2 1 and, therefore, sin <i>θ</i>1 sin <i>θc </i> <i>n</i>2<i>/n</i>1. Beyond this angle, that is for <i>θ</i>1 <i>> θc</i>, light originating in the medium of higher refractive index does not emerge from the medium. At the interface, all the light is reflected back into the medium. This phenomenon is called <i>total internal reflection</i>. For glass, <i>n</i>2 is typically 1.5, and the critical angle at the glass-air interface is sin <i>θc </i> 1<i>/</i>1<i>.</i>5 or <i>θc </i> 42◦.<br/><br/>
Transparent materials such as glass can be shaped into lenses to alter the
direction of light in a specific way. Lenses fall into two general categories: converging lenses and diverging lenses. A converging lens alters the direction of light so that the rays are brought together. A diverging lens has the opposite effect; it spreads the light rays apart.<br/><br/>
Using geometric optics, we can calculate the size and shape of images
formed by optical components, but we cannot predict the inevitable blurring of images which occurs as a result of the wave nature of light.<br/><br/> <br/><img src="./tmp/raw_656f49f53d8d3c5343596b2cc8b234fc-314_1.jpg"/><br/> <br/><img src="./tmp/raw_656f49f53d8d3c5343596b2cc8b234fc-314_2.png"/><br/>
Section C.2 <b>Converging Lenses</b> <b>FIGURE C.2 </b> (Top) Reflection and refraction of light. (Bottom) Total internal
reflection.<br/><br/> <b>C.2</b> <b>Converging Lenses</b><br/><br/>
A simple converging lens is shown in Fig. C.3. This type of a lens is called a convex lens.<br/><br/>
Parallel rays of light passing through a convex lens converge at a point
called the <i>principal focus of the lens</i>. The distance of this point from the lens is called the <i>focal length f</i>. Conversely, light from a point source at the focal point emerges from the lens as a parallel beam. The focal length of the lens is
<br/><img src="./tmp/raw_656f49f53d8d3c5343596b2cc8b234fc-315_1.jpg"/><br/> <br/><img src="./tmp/raw_656f49f53d8d3c5343596b2cc8b234fc-315_2.png"/><br/>
Appendix C <b>Review of Optics</b> <b>FIGURE C.3 </b> The convex lens illuminated (a) by parallel light, (b) by point source at
the focus.<br/><br/>
determined by the index of refraction of the lens material and the curvature of the lens surfaces. We adopt the following convention in discussing lenses.<br/><br/> <b>1. </b>Light travels from left to right.<br/><br/><b>2. </b>The radius of curvature is positive if the curved surface encountered by
the light ray is convex; it is negative if the surface is concave.<br/><br/>
It can be shown that for a thin lens the focal length is given by
<br/><br/>
1 <br/><br/>
1<br/><br/>
(<i>n </i>− 1)
− 1<br/><br/>
(C.3)<br/><br/> <i>f</i><br/><br/> <i>R</i>1<br/><br/> <i>R</i>2
where <i>R</i>1 and <i>R</i>2 are the curvatures of the first and second surfaces, respectively (Fig. C.4). In Fig. C.4, <i>R</i>2 is a negative number.<br/><br/>
Focal length is a measure of the converging power of the lens. The shorter
the focal length, the more powerful the lens. The focusing power of a lens is
<br/><img src="./tmp/raw_656f49f53d8d3c5343596b2cc8b234fc-316_1.jpg"/><br/> <br/><img src="./tmp/raw_656f49f53d8d3c5343596b2cc8b234fc-316_2.png"/><br/>
Section C.2 <b>Converging Lenses</b> <b>FIGURE C.4 </b> Radius of curvature defined for a lens.<br/><br/>
often expressed in diopters defined as<br/><br/>
Focusing power <br/><br/>
1<br/><br/>
(diopters)<br/><br/>
(C.4)<br/><br/> <i>f </i>(meters)
If two thin lenses with focal lengths <i>f</i>1 and <i>f</i>2, respectively, are placed close together, the focal length <i>fT </i>of the combination is
1 1 + 1<br/><br/>
(C.5)<br/><br/> <i>fT</i><br/><br/> <i>f</i>1<br/><br/> <i>f</i>2<br/><br/>
Light from a point source located beyond the focal length of the lens is
converged to a point image on the other side of the lens (Fig. C.5a). This type of an image is called a <i>real image </i>because it can be seen on a screen placed at the point of convergence.<br/><br/>
If the distance between the source of light and the lens is less than the focal
length, the rays do not converge. They appear to emanate from a point on the source side of the lens. This apparent point of convergence is called a <i>virtual<br/>image </i>(Fig. C.5b).<br/><br/>
For a thin lens, the relationship between the source and the image distances
from the lens is given by
1 + 1 1<br/><br/>
(C.6)<br/><br/> <i>p</i><br/><br/> <i>q</i><br/><br/> <i>f</i><br/><br/>
Here <i>p </i>and <i>q</i>, respectively, are the source and the image distances from the lens. By convention, <i>q </i>in this equation is taken as positive if the image is formed on the side of the lens opposite to the source and negative if the image is formed on the source side.<br/><br/>
Light rays from a source very far from the lens are nearly parallel; there
fore, by definition we would expect them to be focused at the principal focal point of the lens. This is confirmed by Eq. C.6, which shows that as <i>p </i>becomes very large (approaches infinity), <i>q </i>is equal to <i>f</i>.<br/><br/> <br/><img src="./tmp/raw_656f49f53d8d3c5343596b2cc8b234fc-317_1.jpg"/><br/> <br/><img src="./tmp/raw_656f49f53d8d3c5343596b2cc8b234fc-317_2.png"/><br/>
Appendix C <b>Review of Optics</b> <b>FIGURE C.5 </b> Image formation by a convex lens: (a) real image, (b) virtual image.<br/><br/>
If the source is displaced a distance <i>x </i>from the axis, the image is formed
at a distance <i>y </i>from the axis such that <i>y </i> <i>q</i><br/><br/>
(C.7)<br/><br/> <i>x</i><br/><br/> <i>p</i><br/><br/>
This is illustrated for a real image in Fig. C.6. The relationship between <i>p </i>and <i>q </i>is still given by Eq. C.6.<br/><br/> <b>C.3</b> <b>Images of Extended Objects</b><br/><br/>
So far we have discussed only the formation of images from point sources.<br/><br/>The treatment, however, is easily applied to objects of finite size.<br/><br/>
When an object is illuminated, light rays emanate from every point on the
object (Fig. C.7a). Each point on the object plane a distance <i>p </i>from the lens
<br/><img src="./tmp/raw_656f49f53d8d3c5343596b2cc8b234fc-318_1.jpg"/><br/> <br/><img src="./tmp/raw_656f49f53d8d3c5343596b2cc8b234fc-318_2.png"/><br/> <br/><img src="./tmp/raw_656f49f53d8d3c5343596b2cc8b234fc-318_3.jpg"/><br/> <br/><img src="./tmp/raw_656f49f53d8d3c5343596b2cc8b234fc-318_4.png"/><br/>
Section C.3 <b>Images of Extended Objects</b> <b>FIGURE C.6 </b> Image formation off axis.<br/><br/> <b>FIGURE C.7 </b> Image of an object: (a) real, (b) virtual.<br/><br/>
is imaged at the corresponding point on the image plane a distance <i>q </i>from the lens. The relationship between the object and the image distances is given by Eq. C.6. As shown in Fig. C.7, real images are inverted and virtual images are upright. The ratio of image to object height is given by
Image height −<i>q</i><br/><br/>
(C.8)<br/><br/>
Object height <i>p</i><br/><br/> <br/><img src="./tmp/raw_656f49f53d8d3c5343596b2cc8b234fc-319_1.jpg"/><br/> <br/><img src="./tmp/raw_656f49f53d8d3c5343596b2cc8b234fc-319_2.png"/><br/>
Appendix C <b>Review of Optics</b> <b>FIGURE C.8 </b> A diverging lens.<br/><br/> <b>C.4</b> <b>Diverging Lenses</b><br/><br/>
An example of a diverging lens is the concave lens shown in Fig. C.8. Parallel light diverges after passing through a concave lens. The apparent source of origin for the diverging rays is the focal point of the concave lens. All the equations we have presented for the converging lens apply in this case also, provided the sign conventions are obeyed. From Eq. C.3, it follows that the focal length for a diverging lens is always negative and the lens produces only virtual images (Fig. C.8).<br/><br/> <b>C.5</b><br/><br/> <b>Lens Immersed in a Material Medium</b><br/><br/>
The lens equations that we have presented so far apply in the case when the lens is surrounded by air that has a refraction index of approximately 1. Let us now consider the more general situation shown in Fig. C.9, which we will need in our discussion of the eye. The lens here is embedded in a medium that has a different index of refraction (<i>n</i>1 and <i>n</i>2) on each side of the lens. It can be shown (see [15-3]) that under these conditions the relationship between the object and the image distances is <i>n</i>1 + <i>n</i>2 <i>nL </i>−<i>n</i>1 − <i>nL </i>− <i>n</i>2<br/><br/>
(C.9)<br/><br/> <i>p</i><br/><br/> <i>q</i><br/><br/> <i>R</i>1<br/><br/> <i>R</i>2<br/><br/> <br/><img src="./tmp/raw_656f49f53d8d3c5343596b2cc8b234fc-320_1.jpg"/><br/> <br/><img src="./tmp/raw_656f49f53d8d3c5343596b2cc8b234fc-320_2.png"/><br/>
Section C.5 <b>Lens Immersed in a Material Medium</b> <b>FIGURE C.9 </b> Lens immersed in a material medium.<br/><br/>
Here <i>nL </i>is the refraction index of the lens material. The effective focal
length in this case is
1 <i>n</i>2 −<i>n</i>1 − <i>nL </i>−<i>n</i>2<br/><br/>
(C.10)<br/><br/> <i>f</i><br/><br/> <i>R</i>1<br/><br/> <i>R</i>2<br/><br/>
Note that in air <i>n</i>1 <i>n</i>2 1 and Eq. C.10 reduces to Eq. C.3.<br/><br/>
The lens equations we have presented in this appendix assume that the
lenses are thin. This is not a fully valid assumption for the lenses in the eye.<br/><br/>Nevertheless these equations are adequate for our purposes.<br/><br/> <br/><br/>
Bibliography<br/><br/> <b>Chapters 1 to 6</b>
6-1 Alexander, R. McNeill. <i>Animal Mechanics</i>. London: Sidgwick and
Jackson, 1968.<br/><br/>
6-2 Baez, Albert V. <i>The New College Physics: A Spiral Approach</i>. San
Francisco, CA: W. H. Freeman and Co., 1967.<br/><br/>
6-3 Blesser, William B. <i>A Systems Approach to Biomedicine</i>. New York,
NY: McGraw-Hill Book Co., 1969.<br/><br/>
6-4 Bootzin, David, and Muffley, Harry C. <i>Biomechanics</i>. New York, NY:
Plenum Press, 1969.<br/><br/>
6-5 Cameron, J. R., Skofronick, J. G., and Grant, R. M. <i>Physics of the Body</i>.<br/><br/>
Madison, WI: Medical Physics Publishing, 1992.<br/><br/>
6-6 Chapman, R. F. <i>The Insects</i>. New York, NY: American Elsevier Pub
lishing Co., 1969.<br/><br/>
6-7 Conaghan, P. G. “Update on Osteoarthritis Part 1: Current Concepts and
the Relation to Exercise,” <i>British Journal of Sports Medicine</i>, 36 (2002), 330–333.<br/><br/>
6-8 Cooper, John M., and Glassow, Ruth B. <i>Kinesiology, 3rd </i>ed. St. Louis,
MO: The C. V. Mosby Co., 1972.<br/><br/>
6-9 Cromer, A. H. <i>Physics for the Life Sciences</i>. New York, NY: McGraw
Hill Book Co., 1974.<br/><br/> <b>302</b><br/><br/> <b>Bibliography</b>
6-10 Frankel, Victor H., and Burstein, Albert H. <i>Orthopaedic Biomechanics</i>.<br/><br/>
Philadelphia, PA: Lea and Febiger, 1970.<br/><br/>
6-11 French, A. P. <i>Newtonian Mechanics</i>. New York, NY: W. W. Norton &
Co., Inc., 1971.<br/><br/>
6-12 Frost, H. M. <i>An Introduction to Biomechanics</i>. Springfield, IL: Charles
C Thomas, Publisher, 1967.<br/><br/>
6-13 Gray, James. <i>How Animals Move</i>. Cambridge, UK: University Press,
1953.<br/><br/>
6-14 Heglund, N. C., Willems, P. A., Penta, M., and Cavagna, G. A. “Energy
saving Gait Mechanics with Head-supported Loads,” <i>Nature</i>, 375 (1995), 52–54.<br/><br/>
6-15 Hobbie, R. K. <i>Intermediate Physics for Medicine and Biology</i>. New
York, NY: Springer, 1997.<br/><br/>
6-16 Ingber, D. E. “The Architecture of Life,” <i>Scientific American </i>(January
1998), 47.<br/><br/>
6-17 Jensen, Clayne R., and Schultz, Gordon W. <i>Applied Kinesiology</i>. New
York, NY: McGraw-Hill Book Co., 1970.<br/><br/>
6-18 Kenedi, R. M., ed. <i>Symposium on Biomechanics and Related Bioengi-</i> <i>neering Topics</i>. New York, NY: Pergamon Press, 1965.<br/><br/>
6-19 Lauk, M., Chow, C. C., Pavlik, A. E., and Collins, J. J. “Human Balance
out of Equilibrium: Nonequilibrium Statistical Mechanics in Posture Control,” <i>The American Physical Society</i>, 80 (January 1998), 413.<br/><br/>
6-20 Latchaw, Marjorie, and Egstrom, Glen. <i>Human Movement</i>. Englewood
Cliffs, NJ: Prentice-Hall, 1969.<br/><br/>
6-21 McCormick, Ernest J. <i>Human Factors Engineering</i>. New York, NY:
McGraw-Hill Book Co., 1970.<br/><br/>
6-22 Mathews, Donald K., and Fox, Edward L. <i>The Physiological Basis of</i> <i>Physical Education and Athletics</i>. Philadelphia, PA: W. B. Saunders and Co., 1971.<br/><br/>
6-23 Morgan, Joseph. <i>Introduction to University Physics</i>, Vol. 1, 2nd ed.<br/><br/>
Boston, MA: Allyn and Bacon, 1969.<br/><br/>
6-24 Novacheck, T. F. “The Biomechanics of Running,” <i>Gait and Posture</i>, 7
(1998), 77–95.<br/><br/> <br/><br/> <b>Bibliography</b>
6-25 Offenbacher, Elmer L. “Physics and the Vertical Jump,” <i>American Jour-</i> <i>nal of Physics</i>, 38 (July 1970), 829–836.<br/><br/>
6-26 Richardson, I. W., and Neergaard, E. B. <i>Physics for Biology and Medi-</i> <i>cine</i>. New York, NY: John Wiley & Sons, 1972.<br/><br/>
6-27 Roddy, E. et al.<br/><br/>
“Evidence-based Recommendations for the Role
of Exercise in the Management of Osteoarthritis,” <i>Rheumatology</i>, 44 (2005), 67–73.<br/><br/>
6-28 Rome, L. C. “Testing a Muscle’s Design,” <i>American Scientist</i>, 85 (July–
August 1997), 356.<br/><br/>
6-29 Strait, L. A., Inman, V. T., and Ralston, H. J. “Sample Illustrations of
Physical Principles Selected from Physiology and Medicine,” <i>American<br/>Journal of Physics</i>, 15 (1947), 375.<br/><br/>
6-30 Sutton, Richard M. “Two Notes on the Physics of Walking,” <i>American</i> <i>Journal of Physics</i>, 23 (1955), 490.<br/><br/>
6-31 Wells, Katherine F. <i>Kinesiology: The Scientific Basis of Human Motion</i>.<br/><br/>
Philadelphia, PA: W. B. Saunders and Co., 1971.<br/><br/>
6-32 Williams, M., and Lissner, H. R. <i>Biomechanics of Human Motion</i>. Phil
adelphia, PA: W. B. Saunders Co., 1962.<br/><br/>
6-33 Winter, D. A. “Human Balance and Posture Control during Standing
and Walking,” <i>Gait & Posture</i>, 3 (1995), 193–214.<br/><br/>
6-34 Wolff, H. S. <i>Biomedical Engineering</i>. New York, NY: McGraw-Hill
Book Co., 1970.<br/><br/> <b>Chapter 7</b>
7-1 Alexander, R. McNeill. <i>Animal Mechanics</i>. London: Sidgwick and
Jackson, 1968.<br/><br/>
7-2 Bush, J. W. M., and Hu, D. L. “Walking on Water: Biolocomotion at the
Interface,” <i>Annu. Rev. Fluid Mech</i>., 38 (2006), 339–369.<br/><br/>
7-3 Chapman, R. F. <i>The Insects</i>. New York, NY: American Elsevier Pub
lishing Co., 1969.<br/><br/>
7-4 Foth, H. D., and Turk, L. M. <i>Fundamentals of Soil Science</i>. New York,
NY: John Wiley & Sons, 1972.<br/><br/>
7-5 Gamow, G., and Ycas, M. <i>Mr. Tomkins Inside Himself</i>. New York, NY:
The Viking Press, 1967.<br/><br/> <b>Bibliography</b>
7-6 Hobbie, R. K. <i>Intermediate Physics for Medicine and Biology</i>. New
York, NY: Springer, 1997.<br/><br/>
7-7 Morgan, J. <i>Introduction to University Physics</i>, 2nd ed. Boston, MA:
Allyn and Bacon, 1969.<br/><br/>
7-8 Murray, J. M., and Weber, A. “The Cooperative Action of Muscle Pro
teins,” <i>Scientific American </i>(February 1974), 59.<br/><br/>
7-9 Rome, L. C. “Testing a Muscle’s Design,” <i>American Scientist</i>, 85 (July–
August 1997), 356.<br/><br/> <b>Chapter 8</b>
8-1 Ackerman, E. <i>Biophysical Sciences</i>. Englewood Cliffs, NJ: Prentice
Hall, 1962.<br/><br/>
8-2 Hademenos, G. J. “The Biophysics of Stroke,” <i>American Scientist</i>, 85
(May–June 1997), 226.<br/><br/>
8-3 Morgan, J. <i>Introduction to University Physics</i>, 2nd ed. Boston, MA:
Allyn and Bacon, 1969.<br/><br/>
8-4 Myers, G. H., and Parsonnet, V. <i>Engineering in the Heart and Blood</i> <i>Vessels</i>. New York, NY: John Wiley & Sons, 1969.<br/><br/>
8-5 Richardson, I. W., and Neergaard, E. B. <i>Physics for Biology and Medi-</i> <i>cine</i>. New York, NY: John Wiley & Sons, 1972.<br/><br/>
8-6 Ruch, T. C., and Patton, H. D., eds. <i>Physiology and Biophysics</i>. Philadel
phia, PA: W. B. Saunders Co., 1965.<br/><br/>
8-7 Strait, L. A., Inman, V. T., and Ralston, H. J. “Sample Illustrations of
Physical Principles Selected from Physiology and Medicine,” <i>American<br/>Journal of Physics</i>, 15 (1947), 375.<br/><br/> <b>Chapters 9 to 11</b>
11-1 Ackerman, E. <i>Biophysical Science</i>, Englewood Cliffs, NJ: Prentice-Hall,
1962.<br/><br/>
11-2 Angrist, S. W. “Perpetual Motion Machines,” <i>Scientific American</i>
(January 1968), 114.<br/><br/> <br/><br/> <b>Bibliography</b>
11-3 Atkins, P. W. <i>The 2nd Law</i>. New York, NY: W. H. Freeman and Co.,
1994.<br/><br/>
11-4 Brown, J. H. U., and Gann, D. S., eds. <i>Engineering Principles in Physi-</i> <i>ology</i>, Vols. 1 and 2. New York, NY: Academic Press, 1973.<br/><br/>
11-5 Casey, E. J. <i>Biophysics</i>, New York, NY: Reinhold Publishing Corp.,
1962.<br/><br/>
11-6 Loewenstein, W. R. <i>The Touchstone of Life: Molecular Information,</i> <i>Cell Communication, and the Foundations of Life</i>. New York, NY: Oxford University Press, 1999.<br/><br/>
11-7 Morgan, J. <i>Introduction to University Physics</i>, 2nd ed. Boston, MA:
Allyn and Bacon, 1969.<br/><br/>
11-8 Morowitz, H. J. <i>Energy Flow in Biology</i>. New York, NY: Academic
Press, 1968.<br/><br/>
11-9 Peters, R. H. <i>The Ecological Implications of Body Size</i>. Cambridge
University Press, 1983.<br/><br/>
11-10 Rose, A. H., ed. <i>Thermobiology</i>. London: Academic Press, 1967.<br/><br/>
11-11 Ruch, T. C., and Patton, H. D., eds. <i>Physiology and Biophysics</i>. Phila
delphia, PA: W. B. Saunders Co., 1965.<br/><br/>
11-12 Schurch, S., Lee, M., and Gehr, P. “Pulmonary Surfactant: Surface
Properties and Function of Alveolar and Airway Surfactant,” <i>Pure &<br/>Applied Chemistry</i>, 64(11) (1992), 1745–1750.<br/><br/>
11-13 Stacy, R. W., Williams, D. T., Worden, R. E., and McMorris, R. W.<br/><br/> <i>Biological and Medical Physics</i>. New York, NY: McGraw-Hill Book Co., 1955.<br/><br/> <b>Chapter 12</b>
12-1 Alexander, R. McNeil <i>Animal Mechanics</i>. Seattle, WA: University of
Washington Press, 1968.<br/><br/>
12-2 Brown, J. H. U., and Gann, D. S., eds. <i>Engineering Principles in Phys-</i> <i>iology</i>, Vols. 1 and 2. New York, NY: Academic Press, 1973.<br/><br/>
12-3 Burns, D. M., and MacDonald, S. G. G. <i>Physics for Biology and</i> <i>Pre-Medical Students</i>. Reading, MA: Addison-Wesley Publishing Co., 1970.<br/><br/> <b>Bibliography</b>
12-4 Casey, E. J. <i>Biophysics</i>. New York, NY: Reinhold Publishing Corp.,
1962.<br/><br/>
12-5 Cromwell, L., Weibell, F.J., Pfeiffer, E. A., and Usselman, L. B. <i>Bio-</i> <i>medical Instrumentation and Measurements</i>. Englewood Cliffs, NJ: Prentice-Hall, 1973.<br/><br/>
12-6 Marshall, J. S., Pounder, E. R., and Stewart, R. W. <i>Physics</i>, 2nd ed.<br/><br/>
New York, NY: St. Martin’s Press, 1967.<br/><br/>
12-7 Mizrach, A., Hetzroni, A., Mazor, M., Mankin, R. W., Ignat, T.,
Grinshpun, J., Epsky, N. D., Shuman, D., and Heath, R. R. “Acoustic Trap for Female Mediterranean Fruit Flies,” <i>Transactions of the Asae<br/></i>48(2005), 2017–2022.<br/><br/>
12-8 Morgan, J. <i>Introduction to University Physics</i>, 2d ed. Boston, MA:
Allyn and Bacon, 1969.<br/><br/>
12-9 Richardson, I. W., and Neergaard, E. B. <i>Physics for Biology and Medi-</i> <i>cine</i>. New York, NY: John Wiley & Sons, 1972.<br/><br/>
12-10 Stacy, R. W., Williams, D. T., Worden, R. E., and McMorris, R. W.<br/><br/> <i>Biological and Medical Physics</i>. New York, NY: McGraw-Hill Book Co., 1955.<br/><br/> <b>Chapter 13</b>
13-1 Ackerman, E. <i>Biophysical Science</i>. Englewood Cliffs, NJ: Prentice-Hall,
Inc., 1962.<br/><br/>
13-2 Bassett, C. A. L. “Electrical Effects in Bone,” <i>Scientific American</i>
(October 1965), 18.<br/><br/>
13-3 Bullock, T. H. “Seeing the World through a New Sense: Electrorecep
tion in Fish,” <i>American Scientist </i>61 (May–June 1973), 316.<br/><br/>
13-4 Delchar, T. A. <i>Physics in Medical Diagnosis</i>. New York, NY: Chapman
and Hall, 1997.<br/><br/>
13-5 Hobbie, R. K. “Nerve Conduction in the Pre-Medical Physics Course,” <i>American Journal of Physics</i>, 41 (October 1973), 1176.<br/><br/>
13-6 Hobbie, R. K. <i>Intermediate Physics for Medicine and Biology</i>. New
York, NY: Springer, 1997.<br/><br/> <br/><br/> <b>Bibliography</b>
13-7 Katz, B. “How Cells Communicate,” <i>Scientific American </i>(September
1961), 208.<br/><br/>
13-8 Katz, B. <i>Nerve Muscle and Synapse</i>. New York, NY: McGraw-Hill,
Inc., 1966.<br/><br/>
13-9 Miller, W. H., Ratcliff, F., and Hartline, H. K. “How Cells Receive
Stimuli,” <i>Scientific American </i>(September 1961), 223.<br/><br/>
13-10 Scott, B. I. H. “Electricity in Plants,” <i>Scientific American </i>(October
1962), 107.<br/><br/> <b>Chapter 14</b>
14-1 Ackerman, E. <i>Biophysical Science</i>. Englewood Cliffs, NJ: Prentice-Hall,
Inc., 1962.<br/><br/>
14-2 Blesser, W. B. <i>A Systems Approach to Biomedicine</i>. New York, NY:
McGraw-Hill Book Co., 1969.<br/><br/>
14-3 Cromwell, L., Weibell, F. J., Pfeiffer, E. A., and Usselman, L. B. <i>Bio-</i> <i>medical Instrumentation and Measurements</i>. Englewood Cliffs, NJ: Prentice-Hall, Inc., 1973.<br/><br/>
14-4 Davidovits, P. <i>Communication</i>. New York, NY: Holt, Rinehart and
Winston, 1972.<br/><br/>
14-5 Loizou, P. C. “Mimicking the Human Ear,” <i>IEEE Signal Processing</i> <i>Magazine </i>(September 1998), 101–130.<br/><br/>
14-6 Scher, A. M. “The Electrocardiogram,” <i>Scientific American </i>(November
1961), 132.<br/><br/> <b>Chapter 15</b>
15-1 Ackerman, E. <i>Biophysical Science</i>. Englewood Cliffs, NJ: Prentice
Hall, Inc., 1962.<br/><br/>
15-2 Davidovits, P., and Egger, M. D. “Microscopic Observation of Endothe
lial Cells in the Cornea of an Intact Eye,” <i>Nature </i>244 (1973), 366.<br/><br/>
15-3 Katzir, A. “Optical Fibers in Medicine,” <i>Scientific American </i>(May
1989) 260, 120.<br/><br/> <b>Bibliography</b>
15-4 Marshall, J. S., Pounder, E. R., and Stewart, R. W. <i>Physics</i>, 2nd ed. New
York, NY: St. Martin’s Press, 1967.<br/><br/>
15-5 Muntz, W. R. A. “Vision in Frogs,” <i>Scientific American </i>(March 1964),
110.<br/><br/>
15-6 Ruch, T. C., and Patton, H. D. <i>Physiology and Biophysics</i>. Philadelphia,
PA: W. B. Saunders and Co., 1965.<br/><br/>
15-7 Wald, George. “Eye and the Camera,” <i>Scientific American </i>(August
1950), 32.<br/><br/> <b>Chapters 16 and 17</b>
16-1 Ackerman, E. <i>Biophysical Sciences</i>. Englewood Cliffs, NJ: Prentice
Hall, Inc., 1962.<br/><br/>
16-2 Burns, D. M., and MacDonald, S. G. G. <i>Physics for Biology and Pre-</i> <i>Medical Students</i>. Reading, MA: Addison-Wesley Publishing Co., 1970.<br/><br/>
16-3 Delchar, T. A. <i>Physics in Medical Diagnosis</i>. New York, NY: Chapman
and Hall, 1997.<br/><br/>
16-4 Dowsett, D. J., Kenny, P. A., and Johnston, R. E. <i>The Physics of</i> <i>Diagnostic Imaging</i>. New York, NY: Chapman and Hall Medical, 1998.<br/><br/>
16-5 Hobbie, R. K. <i>Intermediate Physics for Medicine and Biology</i>. New
York, NY: Springer, 1997.<br/><br/>
16-6 Pizer, V. “Preserving Food with Atomic Energy,” United States Atomic
Energy Commission Division of Technical Information, 1970.<br/><br/>
16-7 Pykett, I. L. “NMR Imaging in Medicine,” <i>Scientific American </i>(May
1982), 78.<br/><br/>
16-8 Schr¨odinger, E. <i>“What Is Life?” and Other Scientific Essays</i>. Garden
City, NY: Anchor Books, Doubleday and Co., 1956.<br/><br/>
Answers to Numerical
Exercises<br/><br/> <b>Chapter 1</b>
1-1(b). <i>F </i> 254 N (57<i>.</i>8 lb) 1-3. <i>θ </i> 72<i>.</i>6◦ 1-4. Maximum weight 335 N (75 lb) 1-5(a). <i>Fm </i> 2253 N (508 lb)<i>, Fr </i> 2386 N (536 lb) 1-6. <i>Fm </i> 720 N<i>, Fr </i> 590 N 1-7(a). <i>Fm </i> 2160 N<i>, Fr </i> 1900 N 1-8. <i>Fm </i> 103 N<i>, Fr </i> 84 N
1-10. <i>x </i> 19<i>.</i>6 cm<i>, v </i>of tendon 4 cm/sec, <i>v </i>of weight 38 cm/sec 1-11. <i>Fm </i> 0<i>.</i>47 W<i>, Fr </i> 1<i>.</i>28 W 1-12(a). <i>Fm </i> 2000 N<i>, Fr </i> 2200 N; (b). <i>Fm </i> 3220 N<i>, Fr </i> 3490 N 1-13. <i>FA </i> 2<i>.</i>5 W<i>, FT </i> 3<i>.</i>5 W<br/><br/> <b>Chapter 2</b>
2-1(a). Distance 354 m; (b). Independ of mass 2-2(a). <i>μ </i> 0<i>.</i>067 2-3(a). <i>μ </i> 1<i>.</i>95; (b). with <i>μ </i> 1<i>.</i>0<i>, θ </i> 39<i>.</i>4◦, with <i>μ </i> 0<i>.</i>01<i>, θ </i> 0<i>.</i>6◦<br/><br/> <b>Chapter 3</b>
3-1. <i>P </i> 4120 watt 3-2. <i>H </i> 126 cm<br/><br/> <b>310</b>
3-3. <i>Fr </i> 1<i>.</i>16 W<i>, θ </i> 65<i>.</i>8◦ 3-4. <i>T </i> 0<i>.</i>534 sec 3-5(a). <i>R </i> 13<i>.</i>5 m; (b). H 3<i>.</i>39 m; (c). 4.08 sec 3-6. <i>v </i> 8<i>.</i>6 m/sec 3-7. <i>r </i> 1<i>.</i>13 m 3-8(a). <i>v </i> 8<i>.</i>3 m/sec; (b) 16.6 cm/sec 3-9. Energy expended/sec 1350 J/sec
3-10. <i>P </i> 371 watt<br/><br/> <b>Chapter 4</b>
4-2. <i>F </i> 10<i>.</i>1 N 4-3. <i>ω </i> 1<i>.</i>25 rad/sec; linear velocity 6<i>.</i>25 m/sec 4-4. <i>ω </i> 1<i>.</i>25 rad/sec 33<i>.</i>9 rpm 4-5. <i>v </i> 62<i>.</i>8 m/sec 4-6. Speed 1<i>.</i>13 m/sec 4<i>.</i>07 km/h 2<i>.</i>53 mph 4-7. <i>T </i> 1<i>.</i>6 sec 4-8. <i>E </i> 1<i>.</i>64 mv2 4-9. Fall time 1 sec<br/><br/> <b>Chapter 5</b>
5-1. <i>v </i> 2<i>.</i>39 m/sec (5<i>.</i>3 mph) 5-2. <i>v </i> 8 m/sec; with 1 cm2area <i>v </i> 2 m/sec 5-3. <i>h </i> 5<i>.</i>1 m 5-4. <i>t </i> 3 × 10−2 sec 5-5. <i>v </i> 17 m/sec (37 mph) 5-6. Force/cm2 4<i>.</i>6 × 106 dyn/cm2, yes 5-7. <i>v </i> 0<i>.</i>7 m/sec, no<br/><br/> <b>Chapter 6</b>
6-1. <i>F </i> 2 W 6-2. <i> </i> 0<i>.</i>052 mm 6-3. <i>h </i> 18<i>.</i>4 cm 6-4. <i> </i> 10<i>.</i>3 cm<br/><br/> <br/><br/> <b>Answers to Numerical Exercises</b><br/><br/> <b>Chapter 7</b>
7-2. <i>P </i> 7<i>.</i>8 W 7-3. <i>v </i> [<i>gV</i>(<i>ρw </i>− <i>ρ</i>)<i>/Aρw</i>]1<i>/</i>2; <i>P </i> 1<i>/</i>2[<i>W</i>{(<i>ρw/ρ</i>) −1}3<i>/</i>2]<i>/</i>(<i>Aρw</i>)1<i>/</i>2 7-5. <i>P </i> 1<i>.</i>51 × 107dyn/cm2 15 atm 7-6. Volume of swim bladder 3<i>.</i>8% 7-7. <i>ρ</i>2 <i>ρ</i>1(<i>W</i>1<i>/W</i>1 − <i>W</i>2) 7-8. <i>p </i> 1<i>.</i>46 × 105 dyn/cm2
7-11. Perimeter 9<i>.</i>42 km 7-12. Speed 29 cm/sec<br/><br/> <b>Chapter 8</b>
8-1. <i>P </i> 3<i>.</i>19 × 10−2 torr 8-2. <i>P </i> 4<i>.</i>8 torr 8-3. <i>h </i> 129 cm 8-4(a). <i>p </i> 61 torr; (b). <i>p </i> 200 torr 8-5(b). <i>R</i>1<i>/R</i>2 0<i>.</i>56 8-6. <i>v </i> 26<i>.</i>5 cm/sec 8-7. <i>N </i> 7<i>.</i>5 × 104 8-8. <i>p </i> 79 torr 8-9. <i>P </i> 10<i>.</i>1 W
8-10(a). <i>P </i> 0<i>.</i>25 W; (b). <i>P </i> 4<i>.</i>5 W<br/><br/> <b>Chapter 9</b><br/><br/>
9-2. <i>V </i> 29<i>.</i>3 <i><br/></i>9-3(a). <i>t </i> 10−2 sec; (b). <i>t </i> 10−5 sec 9-5. <i>N </i> 1<i>.</i>08 × 1020 molecules/sec 9-6. No<i>. </i>breaths/min <i>. </i> 10<i>.</i>4<br/><br/>9-7(a). Rate 1<i>.</i>71 liter/hr-cm2; (b). diameter 0<i>.</i>5 cm 9-8. <i>P </i> 2<i>.</i>87 atm<br/><br/> <b>Chapter 11</b>
11-2. <i>t </i> 373 hours 11-3. <i>v </i> 4<i>.</i>05 m3 11-4. <i>t </i> 105 days 11-5. Weight loss 0<i>.</i>892 kg 11-6. <i>H </i> 18<i>.</i>7 Cal/h
11-8(b). Change 22%; (c). <i>Kr </i> 6<i>.</i>0 Cal<i>/</i>m2-h-C◦ 11-9. Heat removed 8<i>.</i>07 Cal/h
11-10. Heat loss 660 Cal/m2-h 11-11. <i>H </i> 14<i>.</i>4 Cal/h<br/><br/> <b>Chapter 12</b>
12-1. <i>R </i> 31<i>.</i>6 km 12-2. 1.75 times 12-3. <i>p </i> 2<i>.</i>9 × 10−4 dyn/cm2 12-6. <i>D </i> 11<i>.</i>5 m 12-8. Min<i>. </i>size 1<i>.</i>7 × 10−2 cm<br/><br/> <b>Chapter 13</b>
13-1(a). No<i>. </i>of ions 1<i>.</i>88 × 1011; (b). no<i>. </i>of Na+ ions 7<i>.</i>09 × 1014<i>/</i>m;
No<i>. </i>of K+ ions 7<i>.</i>09 × 1015<i>/</i>m
13-8(a). no of cells in series 5000; (b). no of cells in parallel 2<i>.</i>7 × 109<br/><br/> <b>Chapter 14</b>
14-1. <i>i </i> 13<i>.</i>3 amp<br/><br/> <b>Chapter 15</b>
15-1. Change in position 0<i>.</i>004 cm 15-3. For cornea 41.9 diopters; for lens, min power 18.7 diopters, max
power 24<i>.</i>4 diopters
15-4. 1<i>/f </i> −0<i>.</i>39 diopters 15-5. Focusing power ±70 diopters 15-6. <i>p </i> 1<i>.</i>5 cm 15-7(a). Resolution 2<i>.</i>67 × 10−4 rad; (b). Resolution 6<i>.</i>67 × 10−4 rad 15-8. <i>D </i> 20 m 15-9. <i>H </i> 3 × 10−4 cm
<br/><br/>
Index<br/><br/>
Absorption
velocity and <i>K </i><i>c</i>, 151–152
electromagnetic radiation, 123, 242<br/><br/>
viscosity, 104<br/><br/>
spectroscopy, 245<br/><br/>
Airbag, 68–69<br/><br/>
spectrum, 243<br/><br/>
Alcohol, caloric value, 147<br/><br/>
Acceleration<br/><br/>
Aluminum
angular, 277<br/><br/>
specific heat, 119<br/><br/>
centripetal, 278–279<br/><br/>
thermal conductivity, 122<br/><br/>
defined, 273<br/><br/>
Alveoli, 129
equations of translational motion for,
size, 132<br/><br/> 30–32<br/><br/>
Amino acid, 271<br/><br/>
gravitational, 5, 33<br/><br/>
Amplification, in human ear, 175<br/><br/>
of jumper, 31–34<br/><br/>
Amplifier, 201<br/><br/>
Accommodation of eye, 216–217, 230<br/><br/>
transistor, 211<br/><br/>
Angstrom, 285<br/><br/>
Achilles tendon, 19<br/><br/>
Angular acceleration, 277<br/><br/>
Actin, 95, 96<br/><br/>
Angular momentum<br/><br/>
Action potential, 184–186
defined, 280<br/><br/>
in muscles, 194<br/><br/>
equations of, 277–278<br/><br/>
in plants, 196<br/><br/>
Angular motion
measurement, 195
forces on a curved path, 45–48
propagation, 188–190<br/><br/>
Newton’s laws, 280<br/><br/>
Adhesion, 90–91<br/><br/>
pendulum
strength of, 93<br/><br/>
physical, 51–52<br/><br/>
Adrenaline, 155<br/><br/>
simple, 48–50<br/><br/>
Aging, and vision, 216–217
running, 53–56<br/><br/>
Air
vs. linear motion, 277<br/><br/>
inspired vs. expired, 130–131
walking, 50–53<br/><br/>
motion through, 40–42<br/><br/>
Angular velocity, 276<br/><br/>
pressure in ear, 170<br/><br/>
maximum, 54, 78–79<br/><br/> 314<br/><br/> <b>Index</b><br/><br/>
Animal
propagation vs. speed of light, 186<br/><br/>
energetics, 136<br/><br/>
resistance of, 186<br/><br/>
motion, 1<br/><br/>
sodium pump, 184<br/><br/>
sounds produced by, 176<br/><br/>
voltage, 184<br/><br/>
Anvil (middle ear), 169
vs. electric cable, 186–188<br/><br/>
Aorta, 106<br/><br/>
blood pressure drop, 107–108<br/><br/>
Back
turbulent flow, 110–111
backaches, 18<br/><br/>
Aperture of eye, 218–219
lever representation, 17–19<br/><br/>
Apocrine sweat gland, 155<br/><br/>
Bacteria, thermophilic, 145<br/><br/>
Aqueous humor, 215–216<br/><br/>
Ballistocardiograph, 115<br/><br/>
Archimedes’ principle
Barth´elemy, Toussaint, 249<br/><br/>
defined, 87<br/><br/>
Basal metabolic rate, 147
fish buoyancy and, power required to stay afloat and,
Basilar membrane, 170<br/><br/> 87–88<br/><br/>
Bats
Arteriole, 106–107, 109<br/><br/>
chirping, 175–176<br/><br/>
Arterisclerosis, and blood flow, 111–112
echo location, 175<br/><br/>
Artery, 105<br/><br/>
Battery, 292<br/><br/>
elasticity, 112<br/><br/>
Bernoulli’s equation, 101–102, 103<br/><br/>
narrowing, 111, 112<br/><br/>
stenosis and, 111<br/><br/>
natural frequency, 112<br/><br/>
Biceps, 7<br/><br/>
plaque deposit, 111–112<br/><br/>
movement of, 11–15<br/><br/>
pressure drop, 107–108<br/><br/>
Biological control system, 208<br/><br/>
pulmonary, 105<br/><br/>
features, 206–207<br/><br/>
Astigmatism, 227<br/><br/>
feedback, 208–210<br/><br/>
lens for, 228, 229<br/><br/>
in iris, 210<br/><br/>
Atom<br/><br/>
Biomechanics, 2<br/><br/>
absorption spectrum, 243<br/><br/>
Blood
energy state, 241–242<br/><br/>
adrenaline in, 155<br/><br/>
excitation of, 242–243<br/><br/>
cells, radioactive, 269<br/><br/>
interactions between, 270<br/><br/>
circulation, 105–107<br/><br/>
nucleus, 240, 256–257<br/><br/>
flow<br/><br/>
structure, 239–240<br/><br/>
arterisclerosis, 111–112<br/><br/>
Atomic physics, 239<br/><br/>
control, 109<br/><br/>
Axon, 181<br/><br/>
energetics, 110<br/><br/>
action potential, 184–186
laminar, 103, 104, 110, 111<br/><br/>
action potential propagation,
rate, 112–113<br/><br/> 188–190
to brain, 109
capacitance and resistance of, 186<br/><br/>
turbulence, 110–111
circuit, analysis of, diameter of, 183<br/><br/>
velocity, 110, 178<br/><br/>
electrical potentials, 183–184, 185<br/><br/>
kinetic energy, 110<br/><br/>
electrical properties, 186–187<br/><br/>
pressure
length of, 181<br/><br/>
arterial, 107–109<br/><br/>
membrane
at capillaries, 107<br/><br/>
as leaky insulator, 186<br/><br/>
measurement, 113–114<br/><br/>
permeability, 184<br/><br/>
systolic and diastolic, 107<br/><br/>
myelin, 181<br/><br/>
venal, 109<br/><br/>
myelinated, 192–193<br/><br/>
sugar level, 245<br/><br/>
myelinated vs. nonmyelinated, 187<br/><br/>
venal, 136<br/><br/>
nodes of Ranvier, 181<br/><br/>
viscosity, 104 <br/><br/> <b>Index</b><br/><br/>
Bohr model of atom, 240–241, 247<br/><br/>
Center of mass motion
formation of chemical bonds,
in running, 57–58<br/><br/> 243–244<br/><br/>
in walking, 56–57<br/><br/>
hydrogen, 241<br/><br/>
Centrifugal force, 45–46, 47<br/><br/>
Bohr, Niels, 240<br/><br/>
defined, 278<br/><br/>
Boltzmann constant, 117–118<br/><br/>
Centripetal acceleration, 277–278<br/><br/>
Bone<br/><br/>
Centripetal force, 46, 47, 277–278<br/><br/>
density
defined, 277<br/><br/>
cuttlefish, 88–89 137Cesium, 268<br/><br/>
electricity and, 196–197<br/><br/>
Chatecholamine, 109<br/><br/>
fracture<br/><br/>
Chemical bond, formation of, 243–244
energy involved, 64–66<br/><br/>
Chemical energy, 139
force needed to cause, 67–68<br/><br/>
Chemical fumigation, 267<br/><br/>
neck, 69–70<br/><br/>
Chlorine ion, and membrane potential, 184<br/><br/>
NMR signal, 261<br/><br/>
Chromium isotope, in medicine, 269<br/><br/>
osteoblasts and osteoclasts, 197<br/><br/>
Circulatory system, 105–107<br/><br/>
Boyle’s law, 119
body heat transfer and, 151<br/><br/>
Brain
mechanism of energy losses, 107<br/><br/>
activity identification, 265–266
turbulent flow, 111–112<br/><br/> 60<br/><br/>
arteries, 109<br/><br/>
Cobalt, 268<br/><br/>
blood flow to, 109<br/><br/>
Cochlea, 170–171
diagnosing disorders, 204<br/><br/>
implants, 211–213<br/><br/>
ischemic stroke, 112<br/><br/>
Coefficient<br/><br/>
nerve centers in, 150<br/><br/>
convection, 122, 152<br/><br/>
nerve impulses, 162<br/><br/>
diffusion, friction, 24, 25, 46, 71<br/><br/>
role in hearing, 175<br/><br/>
kinetic, 25, 71<br/><br/>
signal processing, 226<br/><br/>
static, 25<br/><br/>
Breathing
thermal conductivity, 121<br/><br/>
cold-blooded animals, 132<br/><br/>
Collision
heat loss by, 155–156, 157<br/><br/>
automobile, 69–70<br/><br/>
surfactants and, 132<br/><br/>
duration of, 66–67<br/><br/>
Broad jump
force of, 67–68<br/><br/>
running position, 39–40
protective device, 68–69
standing position, 37–39<br/><br/>
Compression, 61–62
Broca, Paul Pierre, 265<br/><br/>
Computerized tomography, 250–251, 257<br/><br/>
Broken heart syndrome, 109<br/><br/>
Conductance (G), 291<br/><br/>
Bruit, 111<br/><br/>
Conduction, thermal, 120–121<br/><br/>
Buoyancy, of fish, 88–89
in human body, 150, 151<br/><br/>
Conductor, 291<br/><br/>
Calorie, 119<br/><br/>
Cones and rods, 222, 223, 224, 225–226<br/><br/>
intake, 148<br/><br/>
Confocal microscopy, 232–235<br/><br/>
Capacitor, 291<br/><br/>
Conservation<br/><br/>
Capillary action, 91, 92, 93<br/><br/>
energy, 135–136<br/><br/>
Cardiomyopathy, stress, 109<br/><br/>
Bernoulli’s equation and, 101–102<br/><br/>
Cardiovascular disease
human physiology and, 136<br/><br/>
arterisclerosis, 111–112<br/><br/>
linear momentum, 275<br/><br/>
stress cardiomyopathy, 109<br/><br/>
Constructive interference, 166<br/><br/>
Catfish spine fin, 27–29<br/><br/>
Control system, 206–208<br/><br/>
Cell, 270–271
feedback, 208–210<br/><br/>
Center of gravity, 2<br/><br/>
Convection, 121–122
human body, 3–4<br/><br/>
in human body, 151–153<br/><br/> <b>Index</b><br/><br/>
Converging lens, 294, 295–298<br/><br/>
molecular transport through,<br/><br/>
Cooling mechanism, 136, 141, 150, 126–127<br/><br/> 155–156, 158
random walk, 124–125<br/><br/>
Cork, thermal conductivity of, 122<br/><br/>
through biological membrane,<br/><br/>
Cornea, 215<br/><br/> 128–129<br/><br/>
receive oxygen by diffusion, 133<br/><br/>
Diopter, 219<br/><br/>
refractive power, 220<br/><br/>
Dipole field, 289<br/><br/>
Coulomb, 287<br/><br/>
Diverging lens, 294, 300<br/><br/>
Coulomb’s law, 287–288
DNA, 143–144, 248, 250, 269, 270, 271<br/><br/>
Critical angle, 294<br/><br/>
Doppler effect, 178<br/><br/>
Critical flow velocity, 104<br/><br/>
Doughnut, energy content, 43<br/><br/>
Cromer, A. H., 43<br/><br/>
Dyne, 285<br/><br/>
Crystallography, CT scan, 250–251, Cut-off blood pressure measurement,<br/><br/>
Ear, 168<br/><br/> 113–114<br/><br/>
amplification in, 175<br/><br/>
Cuttlefish, bone density, 88–89
canal, horns, 211<br/><br/>
Davidovits, Paul, 232, 233<br/><br/>
inner, 170–171
da Vinci, Leonardo, 1, 7–8<br/><br/>
balance maintenance, 21<br/><br/>
De Broglie, Louis, 246, 247<br/><br/>
middle, 169–170<br/><br/>
Defibrillator, 206<br/><br/>
outer, 168–169<br/><br/>
Dehydration, 155<br/><br/>
performance, 171–172<br/><br/>
Density<br/><br/>
sound detection capability, 172–173<br/><br/>
constant, 83<br/><br/>
sound intensity, 173–175
of water, and floating, 87–88
threshold of hearing and pain, 173, 174
porous bones and swim bladders,
Eardrum, 162, 168, 169–170, 175<br/><br/> 88–89<br/><br/>
Earth, forces on, 33<br/><br/>
Depth of field, 219<br/><br/>
Eccrine sweat gland, 155<br/><br/>
Destructive interference, 166<br/><br/>
ECG, <i>See </i>Electrocardiography<br/><br/>
Diabetic retinopathy, laser treatment, 254<br/><br/>
Echoes, bats and, 175<br/><br/>
Diagnostic equipment
EEG, <i>See </i>Electroencephalography
computerized tomography, 250–251,<br/><br/>
Eel, electric, 198<br/><br/> 257<br/><br/>
Egger, M. David, 232, 233<br/><br/>
electrocardiograph, 195, 202–203<br/><br/>
Einstein, Albert, 252<br/><br/>
electroencephalograph, 195,<br/><br/>
Elasticity, 61<br/><br/> 203–204<br/><br/>
artery, 112
electromyograph (EMG), 195
insect wings, 79–80
magnetic resonance imaging,
spring, 62–64<br/><br/> 257–258<br/><br/>
Elbow, movement of, 11–15<br/><br/>
stethoscope, 111, 113, 177, X-rays, 249–250<br/><br/>
Electrical technology, in biological
research, 200–202<br/><br/>
Diastolic pressure, Diathermy, 178<br/><br/>
Electric charge, 287–288<br/><br/>
Diffraction, 168<br/><br/>
Electric circuit, 290–292<br/><br/>
in eye, 224<br/><br/>
Electric current, 289<br/><br/>
studies with molecules, 250<br/><br/>
effect on brain, 205<br/><br/>
Diffusion, 123–125
sources, 292<br/><br/>
coefficient, 127<br/><br/>
Electric eel, 198<br/><br/>
contact lens and, 133<br/><br/>
Electric field, 288–289, 292<br/><br/>
in respiratory system, 129–132<br/><br/>
in water, 198<br/><br/>
mean free path, 124<br/><br/>
Electric fish, 197–198<br/><br/> <br/><br/> <b>Index</b><br/><br/>
Electricity
consumption in physical activity,
as a natural phenomena, 180<br/><br/> 42–43<br/><br/>
in bone, 196–197<br/><br/>
load carrying, 58–59
fish and, 197–198
running, 54–56<br/><br/>
in plants, 196<br/><br/>
electromagnetic, 122–123<br/><br/>
magnetism and, 292<br/><br/>
forms, 283<br/><br/>
nervous system and, 180–196<br/><br/>
from food, 147–149<br/><br/>
physiological effects, 204–206<br/><br/>
internal, 117, 139<br/><br/>
piezoelectricity, 196–197
involved in bone fracture, 64–66<br/><br/>
Electric shock, 204–205
kinetic, 283<br/><br/>
Electrocardiography (ECG), 195, 202–203<br/><br/>
insect wing in flight, 78–79<br/><br/>
Electrode, 202
of particles in gas, 117<br/><br/>
Electroencephalography (EEG), 195,
level, 241–242<br/><br/> 203–204<br/><br/>
mechanical, in ultrasonic wave, 178<br/><br/>
Electromagnetic radiation, 214<br/><br/>
requirements, 146–149
energy and, 122–123<br/><br/>
during pregnancy, 149
excitation of atom and, 242–243<br/><br/>
unit and conversion, 286<br/><br/>
Electromyography (EMG), 195<br/><br/>
Entropy, 142<br/><br/>
Electron, 239, 240–241<br/><br/>
Epilepsy, 205<br/><br/>
binding energy, 243<br/><br/>
Equilibrium
diffraction patterns, 247<br/><br/>
human body considerations, 3–4<br/><br/>
electric charge of, 287<br/><br/>
stability and, 2–3
energy level, 241–242
static, 2–3, 282<br/><br/>
excitation, methods of, 242<br/><br/>
Eustachian tube, 170<br/><br/>
excited state, 242<br/><br/>
Evaporation, skin temperature control by,
ground state, 241–242<br/><br/> 155–156<br/><br/>
high-speed (Beta particles), 256<br/><br/>
Excited state, 242<br/><br/>
and food preservation, 268<br/><br/>
Exercise, osteoarthritis and, 71<br/><br/>
impact, 242<br/><br/>
Eye
inner, 243<br/><br/>
aging and, 216–217<br/><br/>
in oscilloscope, 201
aperture and depth of field, 218–219
orbital restrictions, 240–241
eyeglasses, 211<br/><br/>
orbit around nucleus, 240<br/><br/>
focusing, 216–217, 230<br/><br/>
outer, 243<br/><br/>
laser treatment, 253–255
radiation and, 122–123
lens system, 219–220
shared, 244
light intensity reaching retina,
wavelength, 247<br/><br/> 207–208, 209<br/><br/>
wavelike properties, 246<br/><br/>
near point, 216–217<br/><br/>
Electron microscope, 247–248
parameters, 220<br/><br/>
EMG, <i>See </i>Electromyography
reduced, 220–222<br/><br/>
Emission
resolution of, 223–225<br/><br/>
spectroscopy, 245<br/><br/>
structure, 215–216<br/><br/>
spontaneous, 252<br/><br/>
vs. camera, 217–218
stimulated, 252<br/><br/>
Eyepiece, 230, 231<br/><br/>
Emissivity, 123<br/><br/>
of skin, 153<br/><br/>
Falling<br/><br/>
Endoscope, 236–237
fracture due to, 67–68<br/><br/>
Energy, 282–283
from great height, 70<br/><br/>
chemical, 139<br/><br/>
on snow, 70<br/><br/>
in food, 141<br/><br/>
Farads, 291<br/><br/>
conservation, 135–136<br/><br/>
Fasting, world record, 149
<b>Index</b><br/><br/>
Feedback system, 208–209
fluid, 82–86<br/><br/>
negative feedback, 209<br/><br/>
impulsive, 66–67<br/><br/>
positive feedback, 209<br/><br/>
bone fracture and, 67–68<br/><br/>
Fetus<br/><br/>
lines of, 288–289<br/><br/>
energy required, 149
on a curved path, 45–48
heart, examination, 178<br/><br/>
on the foot, 47<br/><br/>
Fiber optics, 235
pressure in a fluid and, 82–83
fiberscopes, 236–237
static, 1–2<br/><br/>
Fibrillation, 205–206<br/><br/>
stopping, 69<br/><br/>
Field line, 288<br/><br/>
unit and conversion, 285<br/><br/>
Fish
Fourier, J. B. J., 171<br/><br/>
buoyancy, 88–89<br/><br/>
Fovea, 222<br/><br/>
catfish spine fin, 27–29<br/><br/>
Fracture
electric, 197–198
due to a fall, 67–68
electronic lures, 176<br/><br/>
energy involved, 64–66
eye, lens focusing power, 219–220
neck bone, 69–70<br/><br/>
Flight<br/><br/>
Frequency
insect, 73–80<br/><br/>
larmor, 259–261<br/><br/>
hovering, 73–75
natural, of healthy artery, 112<br/><br/>
Fluid
pendulum swings, 48–49<br/><br/>
Archimedes’ principle, 87–89<br/><br/>
resonant, 167<br/><br/>
blood, <i>See </i>Blood
sound, 163, 164<br/><br/>
body, 183<br/><br/>
Friction, 23–24
defined, 82<br/><br/>
at hip joint, 26–27
force and pressure, 82–86
catfish spine fin and, 27–29
friction and, 103–104
coefficient, 24, 25, 46, 71<br/><br/>
motion of, 101<br/><br/>
fluid, in air, 40<br/><br/>
Bernoulli’s equation, 101–102
standing at an incline, 25–26
laminar, 103, 104<br/><br/>
viscous, 24, 103, 107<br/><br/>
Poiseuille’s law, 103–104, 107–108<br/><br/>
Frog
turbulent flow, 104–105<br/><br/>
alveolal radii, 132<br/><br/>
viscous friction, 24, 103, 107<br/><br/>
diffusion transfer of oxygen,
surface tension, 89–96<br/><br/> 131–132<br/><br/>
Flux, 126–127, 128<br/><br/>
neurons in retina, 226–227<br/><br/>
solar, 154<br/><br/>
Fulcrum, 9–10<br/><br/>
Focal length of lens, 295–297<br/><br/>
Fumigation, chemical, 267<br/><br/>
Focus, principal, of the lens, 295<br/><br/>
Functional magnetic resonance imaging<br/><br/>
Food
(fMRI), 265–266
composition and energy content, 148<br/><br/>
Fur, 157<br/><br/>
energy from, 141, oxidation, 147<br/><br/>
Galvani, Luigi, 194<br/><br/>
preservation by fumigation, 267<br/><br/>
Gamma ray, use in food preservation,
preservation by radiation, 267–268<br/><br/> 267–268<br/><br/>
requirements for humans, 147–148<br/><br/>
Gas<br/><br/>
Force
behavior, 139
addition of torques and, 281–282
behavior of matter as a function of
adhesive vs. cohesive, 90<br/><br/>
temperature in, 117–119<br/><br/>
centrifugal, 45–46, 47, 278<br/><br/>
diffusion, 125<br/><br/>
centripetal, 46, 47, 277–278<br/><br/>
greenhouse, 159<br/><br/>
contraction of muscle, 96<br/><br/>
noble, 244<br/><br/>
defined, 274<br/><br/>
pressure, 118<br/><br/>
field, 288<br/><br/>
Generator, 292<br/><br/> <br/><br/> <b>Index</b><br/><br/>
Geometric optics, 293–295<br/><br/>
unit of, 119, 284<br/><br/>
Gland
vs. other energy forms, 138–140<br/><br/>
apocrine, 155<br/><br/>
Helicotrema, 170<br/><br/>
eccrine, 155<br/><br/>
Henry, 292<br/><br/>
Glass<br/><br/>
Hertz, 163<br/><br/>
lens, 294<br/><br/>
Hertz, Heinrich, 163<br/><br/>
radiation and, 123, 249<br/><br/>
High jump, 36–37<br/><br/>
silica, 235<br/><br/>
Hip joint<br/><br/>
Glycerine, viscosity of, 104<br/><br/>
friction at, 26–27<br/><br/>
Gravitational force, 274<br/><br/>
movement of, walking on injured, 17<br/><br/>
Greenhouse effect, 159<br/><br/>
Hooke, Robert, 62, 63<br/><br/>
Greenhouse gas, 159<br/><br/>
Hooke’s law, 62, 79<br/><br/>
Ground state, 241–242<br/><br/>
Hormone, 109, 207<br/><br/>
Gyromagnetic ratio, 258, 259<br/><br/>
Hovering flight, 73–75
power required, 76–79<br/><br/>
Hales, Stephen, 113<br/><br/>
Human body, <i>See also Specific parts,</i>
Hammer (middle ear), 169 <i>organs and systems</i>
Hearing, 168
adaptation for heat vs. cold, 156<br/><br/>
aids, 211<br/><br/>
critical temperature, 156<br/><br/>
ear horns, 211<br/><br/>
energy requirements, 146–148
brain’s role in, 175<br/><br/>
food requirements, 147–148
cochlear implants, 211–213<br/><br/>
metabolic rate, 146<br/><br/>
in bats, 175–176
motion, 1–2
sound frequency and pitch, 172–173
oxygen requirements, 130–131<br/><br/>
threshold of, 173, 174<br/><br/>
posture, 19–21<br/><br/>
transistorized aids for, 211<br/><br/>
radiative heating, 154<br/><br/>
Heart<br/><br/>
resistance to cold, 156–157<br/><br/>
aorta, 106<br/><br/>
senses, limitations of, 200<br/><br/>
atrium and ventricle, 105–106<br/><br/>
sound production, 176<br/><br/>
capillaries, 107
specific heat, stability of, 3–4
desynchronization of heart action,
under action of external force, 4–7<br/><br/> 205–206<br/><br/>
sweat production, 155–156, 209<br/><br/>
fetus, examination, 178<br/><br/>
temperature<br/><br/>
power produced by, 112–113<br/><br/>
regulation, 149–151<br/><br/>
stress, 109<br/><br/>
regulation by convection, 151–153<br/><br/>
Heat, 284, <i>See also </i>Thermodynamics
regulation by evaporation, 155–156<br/><br/>
cold and, 156–157<br/><br/>
regulation by radiation, 153<br/><br/>
defined, 116<br/><br/>
Hydrogen
latent, 120<br/><br/>
Bohr model for atom of, 241<br/><br/>
life and, 145–146
formation of molecule of, 244<br/><br/>
loss by breathing, 155–156, 157<br/><br/>
nuclear magnetic properties of, 258<br/><br/>
radiative by sun, 153–154<br/><br/>
Hydrostatic skeleton, 84–86<br/><br/>
specific, 119, 284<br/><br/>
Hyperopia, 227<br/><br/>
therapeutic effects, 161<br/><br/>
lens for, 228, 229
transfer of
conduction, 120–121, 150, 151<br/><br/>
Ice, specific heat of, 119<br/><br/>
convection, 121–122, 151–153<br/><br/>
Image
diffusion, 123–133
of extended objects, 298–300<br/><br/>
in human body, 149–157<br/><br/>
on retina, 217–218<br/><br/>
radiation, 122–123, 139, 153–154<br/><br/>
size, 221–222, 223, 229–230<br/><br/> <b>Index</b>
real, 297<br/><br/>
Irradiation, food, 267–268
size of aperture and, 218–219<br/><br/>
Ischemic stroke, 112<br/><br/>
virtual, 297<br/><br/>
Isotope, 256<br/><br/>
Imaging
oxygen, 256<br/><br/>
computerized tomography, 250–251, 257<br/><br/>
radioactive, 257
magnetic resonance imaging (MRI),
tracers, 268–269<br/><br/> 257–258<br/><br/>
ultrasound, 177–178<br/><br/>
Joint
with NMR, 262–265<br/><br/>
hip<br/><br/>
X-ray, 243, 249–250<br/><br/>
friction at, 26–27<br/><br/>
Impulsive force, 66–67
movement, 15–17
fracture and, 67–68<br/><br/>
walking on injured, 17<br/><br/>
Inductor, 292<br/><br/>
knee problems, 71<br/><br/>
Inertia, moment of, 279<br/><br/>
osteoarthritis, 70–71<br/><br/>
Infant respiratory distress syndrome, 132<br/><br/>
Jump<br/><br/>
Inner ear, 170–171
broad
balance maintenance, 21<br/><br/>
from running position, 39–40<br/><br/>
basilar membrane, 170<br/><br/>
from standing position, 37–39
cochlea, 170–171<br/><br/>
high, 36–37
implants, 211–213
vertical
helicotrema, 170<br/><br/>
effect of gravity on, 35<br/><br/>
Insect
height of, 32–35<br/><br/>
flight, 73<br/><br/>
hovering, 73–75, 76–79<br/><br/>
Kilocalorie, 284<br/><br/>
locomotion on water, 93–95, 99<br/><br/>
Kinesiology, 2<br/><br/> <i>Microvelia</i>, 99<br/><br/>
Kinetic energy
wing
defined, 283<br/><br/>
elasticity, 79–80
insect wing in flight, 78–79
kinetic energy when in flight,
of particles in gas, 117<br/><br/> 78–79<br/><br/>
Kinetic friction, 23–24
muscles, 75–76<br/><br/>
coefficient, 25, 71<br/><br/>
Insulation, fur and feather, 122, 157<br/><br/>
Kinetic theory of matter, 116–119<br/><br/>
Insulator, 291<br/><br/>
Knee joint, problems, 71<br/><br/>
Intensity
Kuhne, W., 217, 218
of light
control, in reaching retina,
Laminar flow, 103, 104, 110, 111<br/><br/> 207–208, 209<br/><br/>
Larmor frequency, 259–261<br/><br/>
of sound, 163<br/><br/>
Laser, 252–253
and loudness, 173–175<br/><br/>
surgery, 253<br/><br/>
Interference, 166–167
ophthalmological applications,<br/><br/>
Internal energy, 117, 139 253–255<br/><br/>
Internal reflection, total, 294, 295<br/><br/>
LASIK (Laser-assisted in Situ Ker
Interneuron, 181
atomileusis), 254–255 131Iodine, 267<br/><br/>
Latent heat, 120<br/><br/>
Ion
Lauterbur, P. C., 263
membrane potential and, 183–184
Lavoisier, Laurent, 135, 136<br/><br/>
negative, 287<br/><br/>
Lens, 215<br/><br/>
positive, 287<br/><br/>
astigmatism, 228, 229<br/><br/>
Iris, 215
contact lens and diffusion, 133<br/><br/>
control system, 210<br/><br/>
converging, 294, 295–298<br/><br/>
defined, 207<br/><br/>
diverging, 294, 300<br/><br/>
optical aperture, 218–219<br/><br/>
eyepiece, 230, 231<br/><br/> <br/><br/> <b>Index</b>
Lens (<i>cont</i>.)<br/><br/>
Mayer, Robert, 135–136
immersed in a material medium,
Mean free path, 124<br/><br/> 300–301<br/><br/>
Medfly (Mediterranean fly), control of,
myopia, 228, 229<br/><br/> 177<br/><br/>
objective, 230, 231<br/><br/>
Membrane
of eye, 219–220<br/><br/>
axon
focusing power, 216–217<br/><br/>
as leaky insulator, 186<br/><br/>
presbyopia and hyperopia, 228, 229<br/><br/>
capacitance and resistance, 186<br/><br/>
Lever, 9–11<br/><br/>
permeability, 184<br/><br/>
arm, 279<br/><br/>
basilar, 170<br/><br/>
elbow movement, 11–15
biological, diffusion through,
hip movement, 15–17<br/><br/> 128–129<br/><br/>
spine movement, 17–19
oval window in ear, 169
standing on tip-toe on one foot,
tympanic, 162, 168, 169–170, 175 19, 20<br/><br/>
Membrane protein, solubility, 98<br/><br/>
Light, 162, 214<br/><br/>
Mercury, viscosity of, 104<br/><br/>
emitted by laser, 252<br/><br/>
Metabolic rate, 145–146
fiber-optic devices and, 237<br/><br/>
defined, 146<br/><br/>
intensity at retina, 207–208, 209<br/><br/>
for selected activities, 146<br/><br/>
penetration through tissue, 232<br/><br/>
Metabolism, 157<br/><br/>
properties, 215<br/><br/>
Mho, 291<br/><br/>
speed, 293<br/><br/>
Micron, 285<br/><br/>
vision and, 214–215<br/><br/>
Microscope, 231<br/><br/>
Limping, 17, 18<br/><br/>
compound, 231<br/><br/>
Linear momentum, 274<br/><br/>
confocal, 232–235<br/><br/>
conservation, 275<br/><br/>
electron, 247–248<br/><br/>
Linear motion, 277<br/><br/>
resolution, 231–232<br/><br/>
Lines of force, 288<br/><br/> <i>Microvelia</i>, 99<br/><br/>
Lipoprotein, solubility, 98<br/><br/>
Middle ear, 169–170<br/><br/>
Lithium, 241<br/><br/>
Eustachian tube, 170<br/><br/>
Load carrying, energy consumption, 58–59
hammer, anvil, stirrup, 169<br/><br/>
Logarithmic sound intensity, 174<br/><br/>
ossicles, 169, 170, 175<br/><br/>
Long jump, <i>See </i>Broad jump
Miller, S. L., 271<br/><br/>
Loudness, 173–175<br/><br/>
Minsky, Marvin, 233<br/><br/>
Lubrication, 25<br/><br/>
Moisture tension in soil, 92–93
effect on human hip joint, 27<br/><br/>
Molecule<br/><br/>
Lumbar vertebra, fifth, 17–19<br/><br/>
characteristic spectra, 244<br/><br/>
Lung<br/><br/>
diffraction studies with, 250<br/><br/>
gas exchange in, 129–130<br/><br/>
formation of hydrogen, 244<br/><br/>
water vapor and, 155<br/><br/>
organic, 270–271<br/><br/>
X-ray, 250<br/><br/>
transport through diffusion, 126–127<br/><br/>
Moment arm, 279<br/><br/>
Magnetic moment, 258, 259<br/><br/>
Moment of inertia, 279<br/><br/>
Magnetic resonance imaging (MRI), 257–<br/><br/>
Momentum<br/><br/> 258, 262–265<br/><br/>
angular, 280<br/><br/>
functional, 265–266
equations of, 277–278<br/><br/>
Magnetism, electricity and, 292<br/><br/>
linear, 274<br/><br/>
Marangoni propulsion, 99<br/><br/>
conservation, 275<br/><br/>
Mass, 274<br/><br/>
Motion, 1–2<br/><br/>
unit and conversion, 285<br/><br/>
angular<br/><br/>
Matter, kinetic theory of, 116–119<br/><br/>
Newton’s laws, 280<br/><br/>
Maximum angular velocity, 54, 78–79<br/><br/>
vs. linear, 277<br/><br/> <b>Index</b>
Newton’s laws, 274–275<br/><br/>
Newton’s
rotational, 30, 31<br/><br/>
laws of angular motion, 280<br/><br/>
equations for, 278
laws of motion
thermal, 117, 124, 140<br/><br/>
first, 274<br/><br/>
through air, 40–42
second, 275<br/><br/>
translational, 30–32<br/><br/>
third, 275<br/><br/>
Motor neuron, 181<br/><br/> 14Nitrogen, 269<br/><br/>
MRI, <i>See </i>Magnetic resonance imaging
NMR, <i>See </i>Nuclear magnetic resonance<br/><br/>
Muscle<br/><br/>
Noble gas, 244<br/><br/>
action potentials in, 194<br/><br/>
Nodes of Ranvier, 181<br/><br/>
biceps, 7, 11–15<br/><br/>
Noise
contraction, 8, 95–96<br/><br/>
bruit, 111<br/><br/>
efficiency, 42–43<br/><br/>
laminar flow, 113<br/><br/>
fibers, 194<br/><br/>
Nuclear magnetic resonance (NMR), 257–
insect wings, 75–76<br/><br/> 262<br/><br/>
myofibrils, 95<br/><br/>
imaging with, 262–265<br/><br/>
skeletal, 7–9, 95–96<br/><br/>
Nuclear spin, Nucleus, 240, 256–257<br/><br/>
spindle, 194<br/><br/>
transmutation, 257<br/><br/>
stimulation by electric current, triceps, 7, 11, 12<br/><br/>
Musculoskeletal system,<br/><br/>
Objective lens, 230, 231<br/><br/>
interconnectedness, 21<br/><br/>
Ohm, 290<br/><br/>
Myelin, 181<br/><br/>
Ohm’s law, 205, 291<br/><br/>
Myelinated axon, 192–193<br/><br/>
Optical spectra, 243<br/><br/>
vs. nonmyelinated, 187<br/><br/>
Optics, 214<br/><br/>
fiber, 235–237<br/><br/>
Myofibrils, 95<br/><br/>
geometric, 293–295<br/><br/>
Myopia, 227<br/><br/>
vision and, 214–215<br/><br/>
lens for, 228, 229<br/><br/>
Oscilloscope, 201–202<br/><br/>
Myosin, 95, 96<br/><br/>
Osmosis, Ossicles, 169, 170, 175<br/><br/>
Near point of the eye, 216–217<br/><br/>
Osteoarthritis, 70–71<br/><br/>
Neck bone, fracture, 69–70<br/><br/>
exercise and, 71<br/><br/>
Negative feedback, 209–210<br/><br/>
Osteoblast, 197<br/><br/>
Negative ion, 287<br/><br/>
Osteoclast, 197<br/><br/>
Nervous system
Oudin, Paul, 249<br/><br/>
action potential, 184–186<br/><br/>
Outer ear, 168–169
action potential, propagation, 188–190<br/><br/>
ear canal, 169<br/><br/>
electrical phenomena and, 180–181<br/><br/>
pinna, 168<br/><br/>
electrical potentials in axon, 183–184,
tympanic membrane, 162, 168, 169–<br/><br/> 185<br/><br/> 170, 175<br/><br/>
signal propagation, 181<br/><br/>
Oxidation of food, 147<br/><br/>
surface potentials, 194–196<br/><br/>
Oxygen
synaptic transmission, 193–194
consumption, calories produced by, 147<br/><br/>
vision and, 226–227<br/><br/>
diffusion through skin, 129<br/><br/>
Neuron, 180, 181–183<br/><br/>
small animals, 131–132
axons and dendrites, 181, 183, <i>See also</i>
isotopes of, 256<br/><br/>
Axon
oxidation of food, 147<br/><br/>
classes, 181<br/><br/>
requirement for humans, 130–131
Neutron, Newton, 5<br/><br/>
Pacemaker, 202<br/><br/>
Newton, Isaac, 1<br/><br/>
electronic, 206 <br/><br/> <b>Index</b><br/><br/>
Particle, wavelike properties, 246–247
measurement, 113–114<br/><br/>
Pascal (Pa), 83
systolic and diastolic, 107<br/><br/>
Pascal’s principle, 83–84
venal, 109<br/><br/>
Pastuerization, 267<br/><br/>
defined, 274<br/><br/>
Pendulum
fluid, 82–84
physical, 51–52, 54–56<br/><br/>
gas, 118<br/><br/>
simple, 48–50<br/><br/>
in porous bones, 89<br/><br/>
Period, of pendulum motion, 48–49<br/><br/>
inside worm, 85<br/><br/>
Phosphorus, radioactive, 257, 267, 269<br/><br/>
on eardrum, 170<br/><br/>
Photodetector, 245<br/><br/>
Poiseuille’s equation and, 103–104<br/><br/>
Photon, 215<br/><br/>
sound, 164–165, 175<br/><br/>
Photoreceptor, 222, 225–226<br/><br/>
unit and conversion, 285<br/><br/>
Photosynthesis, 214<br/><br/> <i>Principia Mathematica</i>, 1<br/><br/>
Physics and life, 269–271<br/><br/>
Projectile, range of, 37<br/><br/>
Piezoelectric effect, 196–197<br/><br/>
Protein<br/><br/>
Pinna, 168<br/><br/>
caloric value, 147<br/><br/>
Pitch of sound, 172–173<br/><br/>
consumption during fasting, 149<br/><br/>
Planck’s constant, 215, 246–247, 258<br/><br/>
resilin, 79–80<br/><br/>
Plant
solubility of membrane protein and
action potential in, 196<br/><br/>
lipoprotein, 98<br/><br/>
electricity in, 196<br/><br/>
specific heat, 119<br/><br/>
soil water and, 92–93<br/><br/>
Proton, 239–240, 287<br/><br/>
Plaque, arterial, 111–112<br/><br/>
Pulmonary artery, 105<br/><br/>
Poise, 103, 104<br/><br/>
Pupil, 215<br/><br/>
Poiseuille, L. M., 101<br/><br/>
defined, 207<br/><br/>
Poiseuille’s law, 103–104<br/><br/>
Pure tone, 163–164
estimation of blood pressure drop and, <i>P </i>wave, 203<br/><br/> 107–108<br/><br/>
Positive feedback, 209–210<br/><br/>
Quality<br/><br/>
Positive ion, 287<br/><br/>
image, 218<br/><br/>
Posture, 19–21<br/><br/>
sound, 171<br/><br/>
Potassium ion, axon potential and, 184<br/><br/>
Quantum mechanics, 246–247, 270<br/><br/>
Potential
axon, 184<br/><br/>
Radian, 276<br/><br/>
difference, 289<br/><br/>
Radiation, 139<br/><br/>
energy, 283–284
electromagnetic, 122–123, 214<br/><br/>
Power, 284<br/><br/>
food preservation by, 267–268
defined, 78<br/><br/>
human body, 153<br/><br/>
generated by limbs, 88<br/><br/>
solar, 153–154
produced by, 112–113<br/><br/>
and soil, 159<br/><br/>
required to hover, 76–79
therapy, 266–267
required to stay afloat, 87–88
thermal, 122<br/><br/>
unit and conversion, 286<br/><br/>
Radioactive
Precession, 260<br/><br/>
isotopes, 257<br/><br/>
Pregnancy, energy requirements, 149<br/><br/>
tracers, 269<br/><br/>
Presbyopia, 217<br/><br/>
Radioactivity, 256–257
lens for, 229<br/><br/>
Random thermal motion, 124, 140<br/><br/>
Pressure<br/><br/>
Random walk, 124–125<br/><br/>
Bernoulli’s equation and, 101<br/><br/>
Real image, 297<br/><br/>
blood<br/><br/>
Reduced eye, 220–222
arterial, 107–109<br/><br/>
Reflection, 165–166<br/><br/>
at capillaries, 107<br/><br/>
total internal, 294, 295<br/><br/> <b>Index</b><br/><br/>
Refraction, 165–166<br/><br/>
Siemen, 291<br/><br/>
defined, 293<br/><br/>
Silver, thermal conductivity of, 122<br/><br/>
index of, 220<br/><br/>
Simple harmonic motion, 48
refractive power of cornea, 219–220
walking in terms of, 50–51<br/><br/>
Resilin, 79–80<br/><br/>
Sinusoidal sound wave, 163–164, 171, 172<br/><br/>
Resistance of air, 40–42<br/><br/>
Skeletal muscle, 7–9<br/><br/>
Resistivity, 290<br/><br/>
contraction, 95–96<br/><br/>
Resistor, 290–291<br/><br/>
Skin<br/><br/>
Resolution
convection and, 151–153
eye, 223–225<br/><br/>
emissivity of, 153<br/><br/>
microscope, 231–232
evaporative cooling, 156–157<br/><br/>
Resonant frequency, 167<br/><br/>
frostbite, 157<br/><br/>
Respiratory system
oxygen diffusion through, 129<br/><br/>
diffusion process, 129–132<br/><br/>
radiative heating of, 153–154<br/><br/>
surfactants and breathing, 132<br/><br/>
temperature, 150–151<br/><br/>
Retina, 215, 222–223<br/><br/>
control, 151<br/><br/>
cones and rods, 222, 223, 224,
Snell’s law, 235<br/><br/> 225–226<br/><br/>
defined, 293–294
degeneration arrest, 253–254<br/><br/>
Sodium
image size on, 221–222, 223,
ions, 184, 189 229–230<br/><br/>
pump, 184<br/><br/>
light intensity, control of, 207–208, 209<br/><br/>
Soil<br/><br/>
photographic film and, 217–218<br/><br/>
loam vs. clay, 93<br/><br/>
Reynold’s number, 104<br/><br/>
moisture tension, 92–93<br/><br/>
Righting reflex, 21<br/><br/>
specific heat, 119<br/><br/>
Rods and cones, 222, 223, 224, 225–226<br/><br/>
temperature, 158–159
Roentgen, Wilhelm Conrad, 249<br/><br/>
water, 92–93<br/><br/>
Rolling friction, 24<br/><br/>
Solar radiation, 153–154<br/><br/>
Root (plant), and pressure, 92<br/><br/>
soil and, 159<br/><br/>
Rotational motion, 30, 31<br/><br/>
Somatosensory system, balance
equations for, 278<br/><br/>
maintenance, 21<br/><br/>
Running<br/><br/>
Sound, 162<br/><br/>
broad jump, 39–40<br/><br/>
acoustic traps, 176–177
center of mass motion in, 57–58
bell in a jar, 163<br/><br/>
energy expended in, 54–56<br/><br/>
clinical uses, 177<br/><br/>
metabolic rate, 43<br/><br/>
frequency, 163, 164, 172–173<br/><br/>
on a curved track, 47–48
intensity, 163<br/><br/>
speed, 53–54
and loudness, 173–175<br/><br/>
Rupture strength, 63<br/><br/>
logarithmic, 174<br/><br/>
Rutherford, E., 239, 240<br/><br/>
perception of, pitch, 172–173<br/><br/>
Sensitivity
produced by animals, 176<br/><br/>
of ear, 169, 172, 174–175<br/><br/>
properties, 162–165
logarithmic, 174<br/><br/>
pure tone, 163–164<br/><br/>
mechanical reasons for, 175<br/><br/>
speed, 164<br/><br/>
of eye, 226<br/><br/>
wave, 162<br/><br/>
Sensory aid, 211
wavelength (<i>λ</i>), 164<br/><br/>
Sensory neuron, 181<br/><br/>
Specific heat, 119, 284<br/><br/>
Shannon, Claude, 143<br/><br/>
Spectral line, 240<br/><br/>
Shark, and electric field, 198<br/><br/>
Spectrometer, 245<br/><br/>
Shock, electric, 204–205<br/><br/>
Spectroscopy, 244–245
stimulation of muscle with, 206<br/><br/>
absorption, 245 <br/><br/> <b>Index</b>
Spectroscopy (<i>cont</i>.)<br/><br/>
Sweating
emission, 245<br/><br/>
as negative feedback, 209<br/><br/>
Spectrum, absorption, 243<br/><br/>
cooling mechanisms, 155–156<br/><br/>
Speed
dehydration, 155<br/><br/>
defined, 272<br/><br/>
rate, 155<br/><br/>
light, 293<br/><br/>
Synapse, 193<br/><br/>
running, 53–54
synaptic transmission, 193–194<br/><br/>
sound, 164<br/><br/>
Synovial fluid, 25, 27<br/><br/>
walking, 52–53<br/><br/>
Systems approach, 209–210<br/><br/>
Spindle, 194<br/><br/>
Systolic pressure, 107<br/><br/>
Spontaneous emission, Spring, Squid, axon of, 183<br/><br/>
Telescope, 230–231<br/><br/>
Stability<br/><br/>
Temperature, 117–118
equilibrium and, 2–3
body, regulation of, 149–151
human body, 4–7<br/><br/>
critical, 156<br/><br/>
Standing
defined, 117<br/><br/>
at an incline, 25–26
skin, 150–151
broad jump, 37–39<br/><br/>
Terminal velocity, 41–42
tip-toe on one foot, 19, 20<br/><br/>
Thermal conductivity, 120–121<br/><br/>
Standing wave, 166–167<br/><br/>
in human body, 150, 151<br/><br/>
Static equilibrium, 2–3<br/><br/>
Thermal motion, 117<br/><br/>
defined, 282<br/><br/>
random, 124, 140<br/><br/>
Static force, 1–2<br/><br/>
Thermal radiation, 122<br/><br/>
Static friction, 23–24
emitted by soil, 158–159<br/><br/>
coefficient, 25<br/><br/>
Thermal velocity, 118<br/><br/>
Stefan-Boltzmann constant, 123<br/><br/>
Thermodynamics, <i>See also </i>Heat
Stenosis, 111, 112<br/><br/>
defined, 135<br/><br/>
Stethoscope, 111, 113, 177<br/><br/>
first law, 135–136<br/><br/>
electronic, 202<br/><br/>
of living systems, 140–142<br/><br/>
Stimulated emission, 252<br/><br/>
second law, 137–138<br/><br/>
Stirrup (middle ear), 169
information and, 143–144<br/><br/>
Strength of material, 61<br/><br/>
Thermophilic bacteria, 145<br/><br/>
bone, 64–68
Thompson, J. J., 239<br/><br/>
Stress<br/><br/>
Threshold
defined, 62<br/><br/>
of hearing, 173, 174<br/><br/>
stress cardiomyopathy, 109<br/><br/>
of pain, 173, 174<br/><br/>
Stretching
of vision, 225–226
longitudinal, 61–62<br/><br/>
Tissue
spring, 62–64<br/><br/>
light penetration, 232<br/><br/>
Stroke, ischemic, 112<br/><br/>
thermal conductivity, 122, 150<br/><br/> 32Sulphur, 269<br/><br/>
Tomography, computerized, 250–251, 257<br/><br/>
Surface potential, 194–196<br/><br/>
Torque, 279–280
recording of, 202–203
addition of force and, 281–282<br/><br/>
Surface tension, 89–91<br/><br/>
Torr, 83
insect locomotion on water and,
Torricelli, Evangelista, 83 93–95, 99<br/><br/>
Total internal reflection, 294, 295<br/><br/>
muscle contraction and, 95–96<br/><br/>
Tracer, isotopic, 268–269
soil water, 92–93<br/><br/>
Transistor amplifier, 211<br/><br/>
spherical liquid drops, 91–92<br/><br/>
Translational motion, 30<br/><br/>
Surfactants, 97–98
energy consumption, 42–43<br/><br/>
breathing and, 132<br/><br/>
for constant acceleration, 30–32<br/><br/>
secreted by insects, 99<br/><br/>
high jump, 36–37<br/><br/> <b>Index</b><br/><br/>
long jump
critical flow, 104<br/><br/>
standing, 37–39<br/><br/>
defined, 272<br/><br/>
running, 39–40<br/><br/>
terminal, 41–42<br/><br/>
projectile range, 37<br/><br/>
thermal, 118<br/><br/>
through air, 40–42<br/><br/>
Venule, 107<br/><br/>
vertical jump, 32–35<br/><br/>
Vertical jump<br/><br/>
Transmutation of nucleus, 257
effect of gravity on, 35<br/><br/>
Transport, of molecules, 126–127
height of, 32–35<br/><br/>
Triceps, 7<br/><br/> <i>Vespertilionidae </i>bat, echo location,
movement of, 11, 12<br/><br/> 175–176<br/><br/>
Turbulent fluid flow, 104–105<br/><br/>
Vestibular system, balance maintenance,
blood, 110–111<br/><br/> 21<br/><br/> <i>T </i>wave, 203<br/><br/>
Virtual image, 297<br/><br/>
Tympanic membrane, 162, 168, 169–170,
Viscosity, and Poiseuille’s law, 103–104<br/><br/> 175<br/><br/>
Viscous friction, 24, 103, Vision, 214–215
astigmatic, 227, 228, 229<br/><br/>
Ultrasonic
hyperopic, 227, 228, 229<br/><br/>
diathermy, 178<br/><br/>
image quality, 218–219<br/><br/>
flow meter, 178<br/><br/>
myopic, 227, 228, 229<br/><br/>
waves, 177–178
nervous system and, 226–227<br/><br/>
Ultrasound imaging, 177–178<br/><br/>
presbyopic, 217, 229<br/><br/>
Unit
range, 229–230<br/><br/>
calorie, 119<br/><br/>
threshold of, 225–226<br/><br/>
coulomb, 287<br/><br/>
Vitreous humor, 216<br/><br/>
diopter, 219<br/><br/>
Vocal cord, 176<br/><br/>
dyne, 285<br/><br/>
Voltage, 289<br/><br/>
farads, 291<br/><br/>
and current sources, 292<br/><br/>
henry, hertz, 163<br/><br/>
Walking, 50<br/><br/>
kilocalorie, 284
center of mass motion in, 56–57<br/><br/>
mho, 291<br/><br/>
on injured hip, 17<br/><br/>
newton, 5<br/><br/>
simple harmonic motion, 50–51<br/><br/>
of energy, 286<br/><br/>
speed, 52–53<br/><br/>
of force, 285<br/><br/>
Water
of length, 285<br/><br/>
content of food, 148<br/><br/>
of mass, 285<br/><br/>
density of, and floating, 87–88<br/><br/>
of power, 286<br/><br/>
elimination from body, 148<br/><br/>
of pressure, 285<br/><br/>
index of refraction, 220
pascal (Pa), 83<br/><br/>
insect locomotion on, 93–95<br/><br/>
poise, 103, 104<br/><br/>
latent heat of vaporization, 155<br/><br/>
radian, 276
mean free path of molecules in, 124<br/><br/>
siemen, 291<br/><br/>
osmosis, 129<br/><br/>
torr, 83<br/><br/>
sea, 89<br/><br/>
Uranium, isotopes of, 257<br/><br/>
soil, sound and, 166<br/><br/>
Vein, 105<br/><br/>
specific heat, 119<br/><br/>
blood pressure in, 109
speed of sound in, 164<br/><br/>
pulmonary, 105<br/><br/>
surface tension, 89<br/><br/>
Velocity
viscosity, 104<br/><br/>
angular, 276<br/><br/>
Wave, <i>See also </i>Sound
maximum, 54, 78–79<br/><br/>
defined, 162 <br/><br/> <b>Index</b>
Wave (<i>cont</i>.)<br/><br/>
heat converted into, 139–140<br/><br/>
diffraction, 168
implication of second law of thermody
fundamental and harmonic, 171, 172<br/><br/>
namics, 138<br/><br/>
interference, 166–167<br/><br/>
muscular movement, 42<br/><br/> <i>P</i>, 203<br/><br/>
Worm<br/><br/>
reflection and refraction, 165–166
hydrostatic forces in moving, 84–86
standing, 166–167<br/><br/>
movement of, 84<br/><br/> <i>T</i>, ultrasonic, 177–178<br/><br/>
X-ray, 243, 249–250<br/><br/>
wavelength, 164<br/><br/>
computerized tomography, 250–251,<br/><br/>
Weight, 274<br/><br/> 257<br/><br/>
loss, 155<br/><br/>
of lungs, 250<br/><br/>
Whiplash injury, Work
Young’s modulus, 62<br/><br/>
chemical energy and, 42<br/><br/>
of resilin, 79–80
defined, 43, 282<br/><br/>
rupture strength for materials and, 65
<b>This page intentionally left blank</b> <b>This page intentionally left blank</b> <b>This page intentionally left blank</b> <b>This page intentionally left blank</b> <b>This page intentionally left blank</b> <br/><h1>Document Outline</h1> <br/><li>Front Cover</li> <br/><li>Title: Physics in Biology and Medicine</li> <br/><li>ISBN 0123694116</li> <br/><li>Table of Contents (with page links) <ul> <li>1 Static Forces</li> <li>2 Friction</li> <li>3 Translational Motion</li> <li>4 Angular Motion</li> <li>5 Elasticity and Strength of Materials</li> <li>6 Insect Flight</li> <li>7 Fluids</li> <li>8 The Motion of Fluids</li> <li>9 Heat and Kinetic Theory</li> <li>10 Thermodynamics</li> <li>11 Heat and Life</li> <li>12 Waves and Sound</li> <li>13 Electricity</li> <li>14 Electrical Technology</li> <li>15 Optics</li> <li>16 Atomic Physics</li> <li>17 Nuclear Physics</li> <li>Appendices, Bibliography, Answers to Exercises, Index</li> </ul> </li> <br/><li>Preface</li> <br/><li>Abbreviations</li> <br/><li>Chapter 1. Static Forces <ul> <li>1.1 Equilibrium and Stability</li> <li>1.2 Equilibrium Considerations for the Human Body</li> <li>1.3 Stability of the Human Body under the Action of an External Force</li> <li>1.4 Skeletal Muscles</li> <li>1.5 Levers</li> <li>1.6 The Elbow</li> <li>1.7 The Hip</li> <li>1.8 The Back</li> <li>1.9 Standing Tip-Toe on One Foot</li> <li>1.10 Dynamic Aspects of Posture</li> <li>Exercises</li> </ul> </li> <br/><li>Chapter 2. Friction <ul> <li>2.1 Standing at an Incline</li> <li>2.2 Friction at the Hip Joint</li> <li>2.3 Spine Fin of a Catfish</li> <li>Exercises</li> </ul> </li> <br/><li>Chapter 3. Translational Motion <ul> <li>3.1 Vertical Jump</li> <li>3.2 Effect of Gravity on the Vertical Jump</li> <li>3.3 Running High Jump</li> <li>3.4 Range of a Projectile</li> <li>3.5 Standing Broad Jump</li> <li>3.6 Running Broad Jump (Long Jump)</li> <li>3.7 Motion through Air</li> <li>3.8 Energy Consumed in Physical Activity</li> <li>Exercises</li> </ul> </li> <br/><li>Chapter 4. Angular Motion <ul> <li>4.1 Forces on a Curved Path</li> <li>4.2 A Runner on a Curved Track</li> <li>4.3 Pendulum</li> <li>4.4 Walking</li> <li>4.5 Physical Pendulum</li> <li>4.6 Speed of Walking and Running</li> <li>4.7 Energy Expended in Running</li> <li>4.8 Alternate Perspectives on Walking and Running</li> <li>4.9 Carrying Loads</li> <li>Exercises</li> </ul> </li> <br/><li>Chapter 5. Elasticity and Strength of Materials <ul> <li>5.1 Longitudinal Stretch and Compression</li> <li>5.2 A Spring</li> <li>5.3 Bone Fracture: Energy Considerations</li> <li>5.4 Impulsive Forces</li> <li>5.5 Fracture Due to a Fall: Impulsive Force Considerations</li> <li>5.6 Airbags: Inflating Collision Protection Devices</li> <li>5.7 Whiplash Injury</li> <li>5.8 Falling from Great Height</li> <li>5.9 Osteoarthritis and Exercise</li> <li>Exercises</li> </ul> </li> <br/><li>Chapter 6. Insect Flight <ul> <li>6.1 Hovering Flight</li> <li>6.2 Insect Wing Muscles</li> <li>6.3 Power Required for Hovering</li> <li>6.4 Kinetic Energy of Wings in Flight</li> <li>6.5 Elasticity of Wings</li> <li>Exercises</li> </ul> </li> <br/><li>Chapter 7. Fluids <ul> <li>7.1 Force and Pressure in a Fluid</li> <li>7.2 Pascal’s Principle</li> <li>7.3 Hydrostatic Skeleton</li> <li>7.4 Archimedes’ Principle</li> <li>7.5 Power Required to Remain Afloat</li> <li>7.6 Buoyancy of Fish</li> <li>7.7 Surface Tension</li> <li>7.8 Soil Water</li> <li>7.9 Insect Locomotion on Water</li> <li>7.10 Contraction of Muscles</li> <li>7.11 Surfactants</li> <li>Exercises</li> </ul> </li> <br/><li>Chapter 8. The Motion of Fluids <ul> <li>8.1 Bernoulli’s Equation</li> <li>8.2 Viscosity and Poiseuille’s Law</li> <li>8.3 Turbulent Flow</li> <li>8.4 Circulation of the Blood</li> <li>8.5 Blood Pressure</li> <li>8.6 Control of Blood Flow</li> <li>8.7 Energetics of Blood Flow</li> <li>8.8 Turbulence in the Blood</li> <li>8.9 Arteriosclerosis and Blood Flow</li> <li>8.10 Power Produced by the Heart</li> <li>8.11 Measurement of Blood Pressure</li> <li>Exercises</li> </ul> </li> <br/><li>Chapter 9. Heat and Kinetic Theory <ul> <li>9.1 Heat and Hotness</li> <li>9.2 Kinetic Theory of Matter</li> <li>9.3 Definitions</li> <li>9.4 Transfer of Heat</li> <li>9.5 Transport of Molecules by Diffusion</li> <li>9.6 Diffusion through Membranes</li> <li>9.7 The Respiratory System</li> <li>9.8 Surfactants and Breathing</li> <li>9.9 Diffusion and Contact Lenses</li> <li>Exercises</li> </ul> </li> <br/><li>Chapter 10. Thermodynamics <ul> <li>10.1 First Law of Thermodynamics</li> <li>10.2 Second Law of Thermodynamics</li> <li>10.3 Difference between Heat and Other Forms of Energy</li> <li>10.4 Thermodynamics of Living Systems</li> <li>10.5 Information and the Second Law</li> <li>Exercises</li> </ul> </li> <br/><li>Chapter 11. Heat and Life <ul> <li>11.1 Energy Requirements of People</li> <li>11.2 Energy from Food</li> <li>11.3 Regulation of Body Temperature</li> <li>11.4 Control of Skin Temperature</li> <li>11.5 Convection</li> <li>11.6 Radiation</li> <li>11.7 Radiative Heating by the Sun</li> <li>11.8 Evaporation</li> <li>11.9 Resistance to Cold</li> <li>11.10 Heat and Soil</li> <li>Exercises</li> </ul> </li> <br/><li>Chapter 12. Waves and Sound <ul> <li>12.1 Properties of Sound</li> <li>12.2 Some Properties of Waves</li> <li>12.3 Hearing and the Ear</li> <li>12.4 Bats and Echoes</li> <li>12.5 Sounds Produced by Animals</li> <li>12.6 Acoustic Traps</li> <li>12.7 Clinical Uses of Sound</li> <li>12.8 Ultrasonic Waves</li> <li>Exercises</li> </ul> </li> <br/><li>Chapter 13. Electricity <ul> <li>13.1 The Nervous System</li> <li>13.2 Electricity in Plants</li> <li>13.3 Electricity in the Bone</li> <li>13.4 Electric Fish</li> <li>Exercises</li> </ul> </li> <br/><li>Chapter 14. Electrical Technology <ul> <li>14.1 Electrical Technology in Biological Research</li> <li>14.2 Diagnostic Equipment</li> <li>14.3 Physiological Effects of Electricity</li> <li>14.4 Control Systems</li> <li>14.5 Feedback</li> <li>14.6 Sensory Aids</li> <li>Exercises</li> </ul> </li> <br/><li>Chapter 15. Optics <ul> <li>15.1 Vision</li> <li>15.2 Nature of Light</li> <li>15.3 Structure of the Eye</li> <li>15.4 Accommodation</li> <li>15.5 Eye and the Camera</li> <li>15.6 Lens System of the Eye</li> <li>15.7 Reduced Eye</li> <li>15.8 Retina</li> <li>15.9 Resolving Power of the Eye</li> <li>15.10 Threshold of Vision</li> <li>15.11 Vision and the Nervous System</li> <li>15.12 Defects in Vision</li> <li>15.13 Lens for Myopia</li> <li>15.14 Lens for Presbyopia and Hyperopia</li> <li>15.15 Extension of Vision</li> <li>Exercises</li> </ul> </li> <br/><li>Chapter 16. Atomic Physics <ul> <li>16.1 The Atom</li> <li>16.2 Spectroscopy</li> <li>16.3 Quantum Mechanics</li> <li>16.4 Electron Microscope</li> <li>16.5 X-rays</li> <li>16.6 X-ray Computerized Tomography</li> <li>16.7 Lasers</li> <li>Exercises</li> </ul> </li> <br/><li>Chapter 17. Nuclear Physics <ul> <li>17.1 The Nucleus</li> <li>17.2 Magnetic Resonance Imaging</li> <li>17.3 Radiation Therapy</li> <li>17.4 Food Preservation by Radiation</li> <li>17.5 Isotopic Tracers</li> <li>17.6 Laws of Physics and Life</li> <li>Exercises</li> </ul> </li> <br/><li>Appendix A. Basic Concepts in Mechanics <ul> <li>A.1 Speed and Velocity</li> <li>A.2 Acceleration</li> <li>A.3 Force</li> <li>A.4 Pressure</li> <li>A.5 Mass</li> <li>A.6 Weight</li> <li>A.7 Linear Momentum</li> <li>A.8 Newton’s Laws of Motion</li> <li>A.9 Conservation of Linear Momentum</li> <li>A.10 Radian</li> <li>A.11 Angular Velocity</li> <li>A.12 Angular Acceleration</li> <li>A.13 Relations between Angular and Linear Motion</li> <li>A.14 Equations for Angular Momentum</li> <li>A.15 Centripetal Acceleration</li> <li>A.16 Moment of Inertia</li> <li>A.17 Torque</li> <li>A.18 Newton’s Laws of Angular Motion</li> <li>A.19 Angular Momentum</li> <li>A.20 Addition of Forces and Torques</li> <li>A.21 Static Equilibrium</li> <li>A.22 Work</li> <li>A.23 Energy</li> <li>A.24 Forms of Energy</li> <li>A.25 Power</li> <li>A.26 Units and Conversions</li> </ul> </li> <br/><li>Appendix B. Review of Electricity <ul> <li>B.1 Electric Charge</li> <li>B.2 Electric Field</li> <li>B.3 Potential Difference or Voltage</li> <li>B.4 Electric Current</li> <li>B.5 Electric Circuits</li> <li>B.6 Voltage and Current Sources</li> <li>B.7 Electricity and Magnetism</li> </ul> </li> <br/><li>Appendix C. Review of Optics <ul> <li>C.1 Geometric Optics</li> <li>C.2 Converging Lenses</li> <li>C.3 Images of Extended Objects</li> <li>C.4 Diverging Lenses</li> <li>C.5 Lens Immersed in a Material Medium</li> </ul> </li> <br/><li>Bibliography</li> <br/><li>Answers to Numerical Exercises</li> <br/><li>Index (with page links) <ul> <li>A</li> <li>B</li> <li>C</li> <li>D</li> <li>E</li> <li>F</li> <li>G</li> <li>H</li> <li>I</li> <li>J</li> <li>K</li> <li>L</li> <li>M</li> <li>N</li> <li>O</li> <li>P</li> <li>Q</li> <li>R</li> <li>S</li> <li>T</li> <li>U</li> <li>V</li> <li>W</li> <li>X,Y</li> </ul> </li> <br/></body></html>